Abstract:The need for intelligent and efficient resource provisioning for the productive management of resources in real-world scenarios is growing with the evolution of telecommunications towards the 6G era. Technologies such as Open Radio Access Network (O-RAN) can help to build interoperable solutions for the management of complex systems. Probabilistic forecasting, in contrast to deterministic single-point estimators, can offer a different approach to resource allocation by quantifying the uncertainty of the generated predictions. This paper examines the cloud-native aspects of O-RAN together with the radio App (rApp) deployment options. The integration of probabilistic forecasting techniques as a rApp in O-RAN is also emphasized, along with case studies of real-world applications. Through a comparative analysis of forecasting models using the error metric, we show the advantages of Deep Autoregressive Recurrent network (DeepAR) over other deterministic probabilistic estimators. Furthermore, the simplicity of Simple-Feed-Forward (SFF) leads to a fast runtime but does not capture the temporal dependencies of the input data. Finally, we present some aspects related to the practical applicability of cloud-native O-RAN with probabilistic forecasting.
Abstract:The applications concerning vehicular networks benefit from the vision of beyond 5G and 6G technologies such as ultra-dense network topologies, low latency, and high data rates. Vehicular networks have always faced data privacy preservation concerns, which lead to the advent of distributed learning techniques such as federated learning. Although federated learning has solved data privacy preservation issues to some extent, the technique is quite vulnerable to model inversion and model poisoning attacks. We assume that the design of defense mechanism and attacks are two sides of the same coin. Designing a method to reduce vulnerability requires the attack to be effective and challenging with real-world implications. In this work, we propose simulated poisoning and inversion network (SPIN) that leverages the optimization approach for reconstructing data from a differential model trained by a vehicular node and intercepted when transmitted to roadside unit (RSU). We then train a generative adversarial network (GAN) to improve the generation of data with each passing round and global update from the RSU, accordingly. Evaluation results show the qualitative and quantitative effectiveness of the proposed approach. The attack initiated by SPIN can reduce up to 22% accuracy on publicly available datasets while just using a single attacker. We assume that revealing the simulation of such attacks would help us find its defense mechanism in an effective manner.