Abstract:Potentially idiomatic expressions (PIEs) construe meanings inherently tied to the everyday experience of a given language community. As such, they constitute an interesting challenge for assessing the linguistic (and to some extent cultural) capabilities of NLP systems. In this paper, we present XMPIE, a parallel multilingual and multimodal dataset of potentially idiomatic expressions. The dataset, containing 34 languages and over ten thousand items, allows comparative analyses of idiomatic patterns among language-specific realisations and preferences in order to gather insights about shared cultural aspects. This parallel dataset allows to evaluate model performance for a given PIE in different languages and whether idiomatic understanding in one language can be transferred to another. Moreover, the dataset supports the study of PIEs across textual and visual modalities, to measure to what extent PIE understanding in one modality transfers or implies in understanding in another modality (text vs. image). The data was created by language experts, with both textual and visual components crafted under multilingual guidelines, and each PIE is accompanied by five images representing a spectrum from idiomatic to literal meanings, including semantically related and random distractors. The result is a high-quality benchmark for evaluating multilingual and multimodal idiomatic language understanding.
Abstract:Informal language is a style of spoken or written language frequently used in casual conversations, social media, weblogs, emails and text messages. In informal writing, the language faces some lexical and/or syntactic changes varying among different languages. Persian is one of the languages with many differences between its formal and informal styles of writing, thus developing informal language processing tools for this language seems necessary. Such a converter needs a large aligned parallel corpus of colloquial-formal sentences which can be useful for linguists to extract a regulated grammar and orthography for colloquial Persian as is done for the formal language. In this paper we explain our methodology in building a parallel corpus of 50,000 sentence pairs with alignments in the word/phrase level. The sentences were attempted to cover almost all kinds of lexical and syntactic changes between informal and formal Persian, therefore both methods of exploring and collecting from the different resources of informal scripts and following the phonological and morphological patterns of changes were applied to find as much instances as possible. The resulting corpus has about 530,000 alignments and a dictionary containing 49,397 word and phrase pairs.