Abstract:Text-and-Image-To-Image (TI2I), an extension of Text-To-Image (T2I), integrates image inputs with textual instructions to enhance image generation. Existing methods often partially utilize image inputs, focusing on specific elements like objects or styles, or they experience a decline in generation quality with complex, multi-image instructions. To overcome these challenges, we introduce Training-Free Text-and-Image-to-Image (TF-TI2I), which adapts cutting-edge T2I models such as SD3 without the need for additional training. Our method capitalizes on the MM-DiT architecture, in which we point out that textual tokens can implicitly learn visual information from vision tokens. We enhance this interaction by extracting a condensed visual representation from reference images, facilitating selective information sharing through Reference Contextual Masking -- this technique confines the usage of contextual tokens to instruction-relevant visual information. Additionally, our Winner-Takes-All module mitigates distribution shifts by prioritizing the most pertinent references for each vision token. Addressing the gap in TI2I evaluation, we also introduce the FG-TI2I Bench, a comprehensive benchmark tailored for TI2I and compatible with existing T2I methods. Our approach shows robust performance across various benchmarks, confirming its effectiveness in handling complex image-generation tasks.
Abstract:Nowadays, humans are constantly exposed to music, whether through voluntary streaming services or incidental encounters during commercial breaks. Despite the abundance of music, certain pieces remain more memorable and often gain greater popularity. Inspired by this phenomenon, we focus on measuring and predicting music memorability. To achieve this, we collect a new music piece dataset with reliable memorability labels using a novel interactive experimental procedure. We then train baselines to predict and analyze music memorability, leveraging both interpretable features and audio mel-spectrograms as inputs. To the best of our knowledge, we are the first to explore music memorability using data-driven deep learning-based methods. Through a series of experiments and ablation studies, we demonstrate that while there is room for improvement, predicting music memorability with limited data is possible. Certain intrinsic elements, such as higher valence, arousal, and faster tempo, contribute to memorable music. As prediction techniques continue to evolve, real-life applications like music recommendation systems and music style transfer will undoubtedly benefit from this new area of research.