Abstract:We introduce \textbf{Schrödinger AI}, a unified machine learning framework inspired by quantum mechanics. The system is defined by three tightly coupled components: (1) a {time-independent wave-energy solver} that treats perception and classification as spectral decomposition under a learned Hamiltonian; (2) a {time-dependent dynamical solver} governing the evolution of semantic wavefunctions over time, enabling context-aware decision revision, re-routing, and reasoning under environmental changes; and (3) a {low-rank operator calculus} that learns symbolic transformations such as modular arithmetic through learned quantum-like transition operators. Together, these components form a coherent physics-driven alternative to conventional cross-entropy training and transformer attention, providing robust generalization, interpretable semantics, and emergent topology. Empirically, Schrödinger AI demonstrates: (a) emergent semantic manifolds that reflect human-conceived class relations without explicit supervision; (b) dynamic reasoning that adapts to changing environments, including maze navigation with real-time potential-field perturbations; and (c) exact operator generalization on modular arithmetic tasks, where the system learns group actions and composes them across sequences far beyond training length. These results suggest a new foundational direction for machine learning, where learning is cast as discovering and navigating an underlying semantic energy landscape.
Abstract:In this work, we propose a new approach that combines data from multiple sensors for reliable obstacle avoidance. The sensors include two depth cameras and a LiDAR arranged so that they can capture the whole 3D area in front of the robot and a 2D slide around it. To fuse the data from these sensors, we first use an external camera as a reference to combine data from two depth cameras. A projection technique is then introduced to convert the 3D point cloud data of the cameras to its 2D correspondence. An obstacle avoidance algorithm is then developed based on the dynamic window approach. A number of experiments have been conducted to evaluate our proposed approach. The results show that the robot can effectively avoid static and dynamic obstacles of different shapes and sizes in different environments.