Abstract:Diffusion Probabilistic Models (DPMs) are powerful generative models showing competitive performance in various domains, including image synthesis and 3D point cloud generation. However, sampling from pre-trained DPMs involves multiple neural function evaluations (NFE) to transform Gaussian noise samples into images, resulting in higher computational costs compared to single-step generative models such as GANs or VAEs. Therefore, a crucial problem is to reduce NFE while preserving generation quality. To this end, we propose LD3, a lightweight framework for learning time discretization while sampling from the diffusion ODE encapsulated by DPMs. LD3 can be combined with various diffusion ODE solvers and consistently improves performance without retraining resource-intensive neural networks. We demonstrate analytically and empirically that LD3 enhances sampling efficiency compared to distillation-based methods, without the extensive computational overhead. We evaluate our method with extensive experiments on 5 datasets, covering unconditional and conditional sampling in both pixel-space and latent-space DPMs. For example, in about 5 minutes of training on a single GPU, our method reduces the FID score from 6.63 to 2.68 on CIFAR10 (7 NFE), and in around 20 minutes, decreases the FID from 8.51 to 5.03 on class-conditional ImageNet-256 (5 NFE). LD3 complements distillation methods, offering a more efficient approach to sampling from pre-trained diffusion models.