Abstract:Learning how to adapt and make real-time informed decisions in dynamic and complex environments is a challenging problem. To learn this task, Reinforcement Learning (RL) relies on an agent interacting with an environment and learning through trial and error to maximize the cumulative sum of rewards received by it. In multi-player Monopoly game, players have to make several decisions every turn which involves complex actions, such as making trades. This makes the decision-making harder and thus, introduces a highly complicated task for an RL agent to play and learn its winning strategies. In this paper, we introduce a Hybrid Model-Free Deep RL (DRL) approach that is capable of playing and learning winning strategies of the popular board game, Monopoly. To achieve this, our DRL agent (1) starts its learning process by imitating a rule-based agent (that resembles the human logic) to initialize its policy, (2) learns the successful actions, and improves its policy using DRL. Experimental results demonstrate an intelligent behavior of our proposed agent as it shows high win rates against different types of agent-players.