Abstract:Medical image segmentation involves identifying and separating object instances in a medical image to delineate various tissues and structures, a task complicated by the significant variations in size, shape, and density of these features. Convolutional neural networks (CNNs) have traditionally been used for this task but have limitations in capturing long-range dependencies. Transformers, equipped with self-attention mechanisms, aim to address this problem. However, in medical image segmentation it is beneficial to merge both local and global features to effectively integrate feature maps across various scales, capturing both detailed features and broader semantic elements for dealing with variations in structures. In this paper, we introduce MSA$^2$Net, a new deep segmentation framework featuring an expedient design of skip-connections. These connections facilitate feature fusion by dynamically weighting and combining coarse-grained encoder features with fine-grained decoder feature maps. Specifically, we propose a Multi-Scale Adaptive Spatial Attention Gate (MASAG), which dynamically adjusts the receptive field (Local and Global contextual information) to ensure that spatially relevant features are selectively highlighted while minimizing background distractions. Extensive evaluations involving dermatology, and radiological datasets demonstrate that our MSA$^2$Net outperforms state-of-the-art (SOTA) works or matches their performance. The source code is publicly available at https://github.com/xmindflow/MSA-2Net.
Abstract:Medical image segmentation involves identifying and separating object instances in a medical image to delineate various tissues and structures, a task complicated by the significant variations in size, shape, and density of these features. Convolutional neural networks (CNNs) have traditionally been used for this task but have limitations in capturing long-range dependencies. Transformers, equipped with self-attention mechanisms, aim to address this problem. However, in medical image segmentation it is beneficial to merge both local and global features to effectively integrate feature maps across various scales, capturing both detailed features and broader semantic elements for dealing with variations in structures. In this paper, we introduce MSA2Net, a new deep segmentation framework featuring an expedient design of skip-connections. These connections facilitate feature fusion by dynamically weighting and combining coarse-grained encoder features with fine-grained decoder feature maps. Specifically, we propose a Multi-Scale Adaptive Spatial Attention Gate (MASAG), which dynamically adjusts the receptive field (Local and Global contextual information) to ensure that spatially relevant features are selectively highlighted while minimizing background distractions. Extensive evaluations involving dermatology, and radiological datasets demonstrate that our MSA2Net outperforms state-of-the-art (SOTA) works or matches their performance. The source code is publicly available at https://github.com/xmindflow/MSA-2Net.
Abstract:Background: Mycobacterium Tuberculosis (TB) is an infectious bacterial disease presenting similar symptoms to pneumonia; therefore, differentiating between TB and pneumonia is challenging. Therefore, the main aim of this study is proposing an automatic method for differential diagnosis of TB from Pneumonia. Methods: In this study, a two-step decision support system named TPIS is proposed for differential diagnosis of TB from pneumonia based on stacked ensemble classifiers. The first step of our proposed model aims at early diagnosis based on low-cost features including demographic characteristics and patient symptoms (including 18 features). TPIS second step makes the final decision based on the meta features extracted in the first step, the laboratory tests and chest radiography reports. This retrospective study considers 199 patient medical records for patients suffering from TB or pneumonia, which has been registered in a hospital in Arak, Iran. Results: Experimental results show that TPIS outperforms the compared machine learning methods for early differential diagnosis of pulmonary tuberculosis from pneumonia with AUC of 90.26 and accuracy of 91.37 and final decision making with AUC of 92.81 and accuracy of 93.89. Conclusions: The main advantage of early diagnosis is beginning the treatment procedure for confidently diagnosed patients as soon as possible and preventing latency in treatment. Therefore, early diagnosis reduces the maturation of late treatment of both diseases.