Abstract:Multi-robot coordination is fundamental to various applications, including autonomous exploration, search and rescue, and cooperative transportation. This paper presents an optimal consensus framework for multi-robot systems (MRSs) that ensures efficient rendezvous while minimizing energy consumption and addressing actuator constraints. A critical challenge in real-world deployments is actuator limitations, particularly wheel velocity saturation, which can significantly degrade control performance. To address this issue, we incorporate Pontryagin Minimum Principle (PMP) into the control design, facilitating constrained optimization while ensuring system stability and feasibility. The resulting optimal control policy effectively balances coordination efficiency and energy consumption, even in the presence of actuation constraints. The proposed framework is validated through extensive numerical simulations and real-world experiments conducted using a team of Robotarium mobile robots. The experimental results confirm that our control strategies achieve reliable and efficient coordinated rendezvous while addressing real-world challenges such as communication delays, sensor noise, and packet loss.
Abstract:This paper introduces a novel methodology for the cooperative control of multiple quadrotors transporting cablesuspended payloads, emphasizing obstacle-aware planning and event-based Nonlinear Model Predictive Control (NMPC). Our approach integrates trajectory planning with real-time control through a combination of the A* algorithm for global path planning and NMPC for local control, enhancing trajectory adaptability and obstacle avoidance. We propose an advanced event-triggered control system that updates based on events identified through dynamically generated environmental maps. These maps are constructed using a dual-camera setup, which includes multi-camera systems for static obstacle detection and event cameras for high-resolution, low-latency detection of dynamic obstacles. This design is crucial for addressing fast-moving and transient obstacles that conventional cameras may overlook, particularly in environments with rapid motion and variable lighting conditions. When new obstacles are detected, the A* algorithm recalculates waypoints based on the updated map, ensuring safe and efficient navigation. This real-time obstacle detection and map updating integration allows the system to adaptively respond to environmental changes, markedly improving safety and navigation efficiency. The system employs SLAM and object detection techniques utilizing data from multi-cameras, event cameras, and IMUs for accurate localization and comprehensive environmental mapping. The NMPC framework adeptly manages the complex dynamics of multiple quadrotors and suspended payloads, incorporating safety constraints to maintain dynamic feasibility and stability. Extensive simulations validate the proposed approach, demonstrating significant enhancements in energy efficiency, computational resource management, and responsiveness.
Abstract:This paper presents a novel approach to range-based cooperative localization for robot swarms in GPS-denied environments, addressing the limitations of current methods in noisy and sparse settings. We propose a robust multi-layered localization framework that combines shadow edge localization techniques with the strategic deployment of UAVs. This approach not only addresses the challenges associated with nonrigid and poorly connected graphs but also enhances the convergence rate of the localization process. We introduce two key concepts: the S1-Edge approach in our distributed protocol to address the rigidity problem of sparse graphs and the concept of a powerful UAV node to increase the sensing and localization capability of the multi-robot system. Our approach leverages the advantages of the distributed localization methods, enhancing scalability and adaptability in large robot networks. We establish theoretical conditions for the new S1-Edge that ensure solutions exist even in the presence of noise, thereby validating the effectiveness of shadow edge localization. Extensive simulation experiments confirm the superior performance of our method compared to state-of-the-art techniques, resulting in up to 95\% reduction in localization error, demonstrating substantial improvements in localization accuracy and robustness to sparse graphs. This work provides a decisive advancement in the field of multi-robot localization, offering a powerful tool for high-performance and reliable operations in challenging environments.