Abstract:As an important task in remote sensing image analysis, remote sensing change detection (RSCD) aims to identify changes of interest in a region from spatially co-registered multi-temporal remote sensing images, so as to monitor the local development. Existing RSCD methods usually formulate RSCD as a binary classification task, representing changes of interest by merely feature concatenation or feature subtraction and recovering the spatial details via densely connected change representations, whose performances need further improvement. In this paper, we propose STNet, a RSCD network based on spatial and temporal feature fusions. Specifically, we design a temporal feature fusion (TFF) module to combine bi-temporal features using a cross-temporal gating mechanism for emphasizing changes of interest; a spatial feature fusion module is deployed to capture fine-grained information using a cross-scale attention mechanism for recovering the spatial details of change representations. Experimental results on three benchmark datasets for RSCD demonstrate that the proposed method achieves the state-of-the-art performance. Code is available at https://github.com/xwmaxwma/rschange.
Abstract:Spatial attention mechanism has been widely used in semantic segmentation of remote sensing images given its capability to model long-range dependencies. Many methods adopting spatial attention mechanism aggregate contextual information using direct relationships between pixels within an image, while ignoring the scene awareness of pixels (i.e., being aware of the global context of the scene where the pixels are located and perceiving their relative positions). Given the observation that scene awareness benefits context modeling with spatial correlations of ground objects, we design a scene-aware attention module based on a refined spatial attention mechanism embedding scene awareness. Besides, we present a local-global class attention mechanism to address the problem that general attention mechanism introduces excessive background noises while hardly considering the large intra-class variance in remote sensing images. In this paper, we integrate both scene-aware and class attentions to propose a scene-aware class attention network (SACANet) for semantic segmentation of remote sensing images. Experimental results on three datasets show that SACANet outperforms other state-of-the-art methods and validate its effectiveness. Code is available at https://github.com/xwmaxwma/rssegmentation.