Abstract:Understanding the causal relationships that underlie a system is a fundamental prerequisite to accurate decision-making. In this work, we explore how expert knowledge can be used to improve the data-driven identification of causal graphs, beyond Markov equivalence classes. In doing so, we consider a setting where we can query an expert about the orientation of causal relationships between variables, but where the expert may provide erroneous information. We propose strategies for amending such expert knowledge based on consistency properties, e.g., acyclicity and conditional independencies in the equivalence class. We then report a case study, on real data, where a large language model is used as an imperfect expert.
Abstract:Building causal graphs can be a laborious process. To ensure all relevant causal pathways have been captured, researchers often have to discuss with clinicians and experts while also reviewing extensive relevant medical literature. By encoding common and medical knowledge, large language models (LLMs) represent an opportunity to ease this process by automatically scoring edges (i.e., connections between two variables) in potential graphs. LLMs however have been shown to be brittle to the choice of probing words, context, and prompts that the user employs. In this work, we evaluate if LLMs can be a useful tool in complementing causal graph development.
Abstract:The stochastic multi-armed bandit problem is a well-known model for studying the exploration-exploitation trade-off. It has significant possible applications in adaptive clinical trials, which allow for dynamic changes in the treatment allocation probabilities of patients. However, most bandit learning algorithms are designed with the goal of minimizing the expected regret. While this approach is useful in many areas, in clinical trials, it can be sensitive to outlier data, especially when the sample size is small. In this paper, we define and study a new robustness criterion for bandit problems. Specifically, we consider optimizing a function of the distribution of returns as a regret measure. This provides practitioners more flexibility to define an appropriate regret measure. The learning algorithm we propose to solve this type of problem is a modification of the BESA algorithm [Baransi et al., 2014], which considers a more general version of regret. We present a regret bound for our approach and evaluate it empirically both on synthetic problems as well as on a dataset from the clinical trial literature. Our approach compares favorably to a suite of standard bandit algorithms.