Abstract:This paper presents a comprehensive review of AI-driven prognostics for State of Health (SoH) prediction in lithium-ion batteries. We compare the effectiveness of various AI algorithms, including FFNN, LSTM, and BiLSTM, across multiple datasets (CALCE, NASA, UDDS) and scenarios (e.g., varying temperatures and driving conditions). Additionally, we analyze the factors influencing SoH fluctuations, such as temperature and charge-discharge rates, and validate our findings through simulations. The results demonstrate that BiLSTM achieves the highest accuracy, with an average RMSE reduction of 15% compared to LSTM, highlighting its robustness in real-world applications.
Abstract:The rapid growth of industrial automation has highlighted the need for precise and efficient defect detection in large-scale machinery. Traditional inspection techniques, involving manual procedures such as scaling tall structures for visual evaluation, are labor-intensive, subjective, and often hazardous. To overcome these challenges, this paper introduces an automated defect detection framework built on Neural Radiance Fields (NeRF) and the concept of digital twins. The system utilizes UAVs to capture images and reconstruct 3D models of machinery, producing both a standard reference model and a current-state model for comparison. Alignment of the models is achieved through the Iterative Closest Point (ICP) algorithm, enabling precise point cloud analysis to detect deviations that signify potential defects. By eliminating manual inspection, this method improves accuracy, enhances operational safety, and offers a scalable solution for defect detection. The proposed approach demonstrates great promise for reliable and efficient industrial applications.