Abstract:Sparsely-activated Mixture-of-Experts (MoE) architecture has increasingly been adopted to further scale large language models (LLMs) due to its sub-linear scaling for computation costs. However, frequent failures still pose significant challenges as training scales. The cost of even a single failure is significant, as all GPUs need to wait idle until the failure is resolved, potentially losing considerable training progress as training has to restart from checkpoints. Existing solutions for efficient fault-tolerant training either lack elasticity or rely on building resiliency into pipeline parallelism, which cannot be applied to MoE models due to the expert parallelism strategy adopted by the MoE architecture. We present Lazarus, a system for resilient and elastic training of MoE models. Lazarus adaptively allocates expert replicas to address the inherent imbalance in expert workload and speeds-up training, while a provably optimal expert placement algorithm is developed to maximize the probability of recovery upon failures. Through adaptive expert placement and a flexible token dispatcher, Lazarus can also fully utilize all available nodes after failures, leaving no GPU idle. Our evaluation shows that Lazarus outperforms existing MoE training systems by up to 5.7x under frequent node failures and 3.4x on a real spot instance trace.
Abstract:Recent advances in imaging sensors and digital light projection technology have facilitated a rapid progress in 3D optical sensing, enabling 3D surfaces of complex-shaped objects to be captured with improved resolution and accuracy. However, due to the large number of projection patterns required for phase recovery and disambiguation, the maximum fame rates of current 3D shape measurement techniques are still limited to the range of hundreds of frames per second (fps). Here, we demonstrate a new 3D dynamic imaging technique, Micro Fourier Transform Profilometry ($\mu$FTP), which can capture 3D surfaces of transient events at up to 10,000 fps based on our newly developed high-speed fringe projection system. Compared with existing techniques, $\mu$FTP has the prominent advantage of recovering an accurate, unambiguous, and dense 3D point cloud with only two projected patterns. Furthermore, the phase information is encoded within a single high-frequency fringe image, thereby allowing motion-artifact-free reconstruction of transient events with temporal resolution of 50 microseconds. To show $\mu$FTP's broad utility, we use it to reconstruct 3D videos of 4 transient scenes: vibrating cantilevers, rotating fan blades, bullet fired from a toy gun, and balloon's explosion triggered by a flying dart, which were previously difficult or even unable to be captured with conventional approaches.