Abstract:Integrated sensing and communication (ISAC) is a key technology of next generation wireless communication. Backscatter communication (BackCom) plays an important role for internet of things (IoT). Then the integration of ISAC with BackCom technology enables low-power data transmission while enhancing the system sensing ability, which is expected to provide a potentially revolutionary solution for IoT applications. In this paper, we propose a novel backscatter-ISAC (B-ISAC) system and focus on the joint beamforming design for the system. We formulate the communication and sensing model of the B-ISAC system and derive the metrics of communication and sensing performance respectively, i.e., communication rate and detection probability. We propose a joint beamforming scheme aiming to optimize the communication rate under sensing constraint and power budget. A successive convex approximation (SCA) based algorithm and an iterative algorithm are developed for solving the complicated non-convex optimization problem. Numerical results validate the effectiveness of the proposed scheme and associated algorithms. The proposed B-ISAC system has broad application prospect in IoT scenarios.
Abstract:The integration of backscatter communication (BackCom) technology with integrated sensing and communication (ISAC) technology not only enhances the system sensing performance, but also enables low-power information transmission. This is expected to provide a new paradigm for communication and sensing in internet of everything (IoE) applications. Existing works only consider sensing rate and detection performance, while none consider the estimation performance. The design of the system in different task modes also needs to be further studied. In this paper, we propose a novel system called backscatter-ISAC (B-ISAC) and design a joint beamforming framework for different stages (task modes). We derive communication performance metrics of the system in terms of the signal-to-interference-plus-noise ratio (SINR) and communication rate, and derive sensing performance metrics of the system in terms of probability of detection, estimation error of linear least squares (LS) estimation, and the estimation error of linear minimum mean square error (LMMSE) estimation. The proposed joint beamforming framework consists of three stages: tag detection, tag estimation, and communication enhancement. We develop corresponding joint beamforming schemes aimed at enhancing the performance objectives of their respective stages by solving complex non-convex optimization problems. Extensive simulation results demonstrate the effectiveness of the proposed joint beamforming schemes. The proposed B-ISAC system has broad application prospect in sixth generation (6G) IoE scenarios.
Abstract:Visible light positioning (VLP) has drawn plenty of attention as a promising indoor positioning technique. However, in nonstationary environments, the performance of VLP is limited because of the highly time-varying channels. To improve the positioning accuracy and generalization capability in nonstationary environments, a cooperative VLP scheme based on federated learning (FL) is proposed in this paper. Exploiting the FL framework, a global model adaptive to environmental changes can be jointly trained by users without sharing private data of users. Moreover, a Cooperative Visible-light Positioning Network (CVPosNet) is proposed to accelerate the convergence rate and improve the positioning accuracy. Simulation results show that the proposed scheme outperforms the benchmark schemes, especially in nonstationary environments.