Abstract:The increasing shortage of nursing staff and the acute risk of falls in nursing homes pose significant challenges for the healthcare system. This study presents the development of an automated fall detection system integrated into care beds, aimed at enhancing patient safety without compromising privacy through wearables or video monitoring. Mechanical vibrations transmitted through the bed frame are processed using a short-time Fourier transform, enabling robust classification of distinct human fall patterns with a convolutional neural network. Challenges pertaining to the quantity and diversity of the data are addressed, proposing the generation of additional data with a specific emphasis on enhancing variation. While the model shows promising results in distinguishing fall events from noise using lab data, further testing in real-world environments is recommended for validation and improvement. Despite limited available data, the proposed system shows the potential for an accurate and rapid response to falls, mitigating health implications, and addressing the needs of an aging population. This case study was performed as part of the ZIM Project. Further research on sensors enhanced by artificial intelligence will be continued in the ShapeFuture Project.
Abstract:Research in Explainable Artificial Intelligence (XAI) is increasing, aiming to make deep learning models more transparent. Most XAI methods focus on justifying the decisions made by Artificial Intelligence (AI) systems in security-relevant applications. However, relatively little attention has been given to using these methods to improve the performance and robustness of deep learning algorithms. Additionally, much of the existing XAI work primarily addresses classification problems. In this study, we investigate the potential of feature attribution methods to filter out uninformative features in input data for regression problems, thereby improving the accuracy and stability of predictions. We introduce a feature selection pipeline that combines Integrated Gradients with k-means clustering to select an optimal set of variables from the initial data space. To validate the effectiveness of this approach, we apply it to a real-world industrial problem - blade vibration analysis in the development process of turbo machinery.
Abstract:Stochastic optimization algorithms have been successfully applied in several domains to find optimal solutions. Because of the ever-growing complexity of the integrated systems, novel stochastic algorithms are being proposed, which makes the task of the performance analysis of the algorithms extremely important. In this paper, we provide a novel ranking scheme to rank the algorithms over multiple single-objective optimization problems. The results of the algorithms are compared using a robust bootstrapping-based hypothesis testing procedure that is based on the principles of severity. Analogous to the football league scoring scheme, we propose pairwise comparison of algorithms as in league competition. Each algorithm accumulates points and a performance metric of how good or bad it performed against other algorithms analogous to goal differences metric in football league scoring system. The goal differences performance metric can not only be used as a tie-breaker but also be used to obtain a quantitative performance of each algorithm. The key novelty of the proposed ranking scheme is that it takes into account the performance of each algorithm considering the magnitude of the achieved performance improvement along with its practical relevance and does not have any distributional assumptions. The proposed ranking scheme is compared to classical hypothesis testing and the analysis of the results shows that the results are comparable and our proposed ranking showcases many additional benefits.
Abstract:Batch Machine Learning (BML) reaches its limits when dealing with very large amounts of streaming data. This is especially true for available memory, handling drift in data streams, and processing new, unknown data. Online Machine Learning (OML) is an alternative to BML that overcomes the limitations of BML. OML is able to process data in a sequential manner, which is especially useful for data streams. The `river` package is a Python OML-library, which provides a variety of online learning algorithms for classification, regression, clustering, anomaly detection, and more. The `spotRiver` package provides a framework for hyperparameter tuning of OML models. The `spotRiverGUI` is a graphical user interface for the `spotRiver` package. The `spotRiverGUI` releases the user from the burden of manually searching for the optimal hyperparameter setting. After the data is provided, users can compare different OML algorithms from the powerful `river` package in a convenient way and tune the selected algorithms very efficiently.
Abstract:This document provides a comprehensive guide to hyperparameter tuning using spotPython for scikit-learn, PyTorch, and river. The first part introduces spotPython's surrogate model-based optimization process, while the second part focuses on hyperparameter tuning. Several case studies are presented, including hyperparameter tuning for sklearn models such as Support Vector Classification, Random Forests, Gradient Boosting (XGB), and K-nearest neighbors (KNN), as well as a Hoeffding Adaptive Tree Regressor from river. The integration of spotPython into the PyTorch and PyTorch Lightning training workflow is also discussed. With a hands-on approach and step-by-step explanations, this cookbook serves as a practical starting point for anyone interested in hyperparameter tuning with Python. Highlights include the interplay between Tensorboard, PyTorch Lightning, spotPython, and river. This publication is under development, with updates available on the corresponding webpage.
Abstract:The goal of hyperparameter tuning (or hyperparameter optimization) is to optimize the hyperparameters to improve the performance of the machine or deep learning model. spotPython (``Sequential Parameter Optimization Toolbox in Python'') is the Python version of the well-known hyperparameter tuner SPOT, which has been developed in the R programming environment for statistical analysis for over a decade. PyTorch is an optimized tensor library for deep learning using GPUs and CPUs. This document shows how to integrate the spotPython hyperparameter tuner into the PyTorch training workflow. As an example, the results of the CIFAR10 image classifier are used. In addition to an introduction to spotPython, this tutorial also includes a brief comparison with Ray Tune, a Python library for running experiments and tuning hyperparameters. This comparison is based on the PyTorch hyperparameter tuning tutorial. The advantages and disadvantages of both approaches are discussed. We show that spotPython achieves similar or even better results while being more flexible and transparent than Ray Tune.
Abstract:We have built a novel system for the surveillance of drinking water reservoirs using underwater sensor networks. We implement an innovative AI-based approach to detect, classify and localize underwater events. In this paper, we describe the technology and cognitive AI architecture of the system based on one of the sensor networks, the hydrophone network. We discuss the challenges of installing and using the hydrophone network in a water reservoir where traffic, visitors, and variable water conditions create a complex, varying environment. Our AI solution uses an autoencoder for unsupervised learning of latent encodings for classification and anomaly detection, and time delay estimates for sound localization. Finally, we present the results of experiments carried out in a laboratory pool and the water reservoir and discuss the system's potential.
Abstract:Machine learning algorithms such as random forests or xgboost are gaining more importance and are increasingly incorporated into production processes in order to enable comprehensive digitization and, if possible, automation of processes. Hyperparameters of these algorithms used have to be set appropriately, which can be referred to as hyperparameter tuning or optimization. Based on the concept of tunability, this article presents an overview of theoretical and practical results for popular machine learning algorithms. This overview is accompanied by an experimental analysis of 30 hyperparameters from six relevant machine learning algorithms. In particular, it provides (i) a survey of important hyperparameters, (ii) two parameter tuning studies, and (iii) one extensive global parameter tuning study, as well as (iv) a new way, based on consensus ranking, to analyze results from multiple algorithms. The R package mlr is used as a uniform interface to the machine learning models. The R package SPOT is used to perform the actual tuning (optimization). All additional code is provided together with this paper.
Abstract:Most evolutionary robotics studies focus on evolving some targeted behavior without taking the energy usage into account. This limits the practical value of such systems because energy efficiency is an important property for real-world autonomous robots. In this paper, we mitigate this problem by extending our simulator with a battery model and taking energy consumption into account during fitness evaluations. Using this system we investigate how energy awareness affects the evolution of robots. Since our system is to evolve morphologies as well as controllers, the main research question is twofold: (i) what is the impact on the morphologies of the evolved robots, and (ii) what is the impact on the behavior of the evolved robots if energy consumption is included in the fitness evaluation? The results show that including the energy consumption in the fitness in a multi-objective fashion (by NSGA-II) reduces the average size of robot bodies while at the same time reducing their speed. However, robots generated without size reduction can achieve speeds comparable to robots from the baseline set.
Abstract:A surrogate model based hyperparameter tuning approach for deep learning is presented. This article demonstrates how the architecture-level parameters (hyperparameters) of deep learning models that were implemented in Keras/tensorflow can be optimized. The implementation of the tuning procedure is 100 % based on R, the software environment for statistical computing. With a few lines of code, existing R packages (tfruns and SPOT) can be combined to perform hyperparameter tuning. An elementary hyperparameter tuning task (neural network and the MNIST data) is used to exemplify this approach.