Abstract:Unsupervised 3D object detection methods have emerged to leverage vast amounts of data efficiently without requiring manual labels for training. Recent approaches rely on dynamic objects for learning to detect objects but penalize the detections of static instances during training. Multiple rounds of (self) training are used in which detected static instances are added to the set of training targets; this procedure to improve performance is computationally expensive. To address this, we propose the method UNION. We use spatial clustering and self-supervised scene flow to obtain a set of static and dynamic object proposals from LiDAR. Subsequently, object proposals' visual appearances are encoded to distinguish static objects in the foreground and background by selecting static instances that are visually similar to dynamic objects. As a result, static and dynamic foreground objects are obtained together, and existing detectors can be trained with a single training. In addition, we extend 3D object discovery to detection by using object appearance-based cluster labels as pseudo-class labels for training object classification. We conduct extensive experiments on the nuScenes dataset and increase the state-of-the-art performance for unsupervised object discovery, i.e. UNION more than doubles the average precision to 33.9. The code will be made publicly available.
Abstract:This work addresses cross-view camera pose estimation, i.e., determining the 3-DoF camera pose of a given ground-level image w.r.t. an aerial image of the local area. We propose SliceMatch, which consists of ground and aerial feature extractors, feature aggregators, and a pose predictor. The feature extractors extract dense features from the ground and aerial images. Given a set of candidate camera poses, the feature aggregators construct a single ground descriptor and a set of rotational equivariant pose-dependent aerial descriptors. Notably, our novel aerial feature aggregator has a cross-view attention module for ground-view guided aerial feature selection, and utilizes the geometric projection of the ground camera's viewing frustum on the aerial image to pool features. The efficient construction of aerial descriptors is achieved by using precomputed masks and by re-assembling the aerial descriptors for rotated poses. SliceMatch is trained using contrastive learning and pose estimation is formulated as a similarity comparison between the ground descriptor and the aerial descriptors. SliceMatch outperforms the state-of-the-art by 19% and 62% in median localization error on the VIGOR and KITTI datasets, with 3x FPS of the fastest baseline.