Abstract:Intrusion detection has been a commonly adopted detective security measures to safeguard systems and networks from various threats. A robust intrusion detection system (IDS) can essentially mitigate threats by providing alerts. In networks based IDS, typically we deal with cyber threats like distributed denial of service (DDoS), spoofing, reconnaissance, brute-force, botnets, and so on. In order to detect these threats various machine learning (ML) and deep learning (DL) models have been proposed. However, one of the key challenges with these predictive approaches is the presence of false positive (FP) and false negative (FN) instances. This FPs and FNs within any black-box intrusion detection system (IDS) make the decision-making task of an analyst further complicated. In this paper, we propose an explainable artificial intelligence (XAI) based visual analysis approach using overlapping SHAP plots that presents the feature explanation to identify potential false positive and false negatives in IDS. Our approach can further provide guidance to security analysts for effective decision-making. We present case study with multiple publicly available network traffic datasets to showcase the efficacy of our approach for identifying false positive and false negative instances. Our use-case scenarios provide clear guidance for analysts on how to use the visual analysis approach for reliable course-of-actions against such threats.
Abstract:Healthcare industries face challenges when experiencing rare diseases due to limited samples. Artificial Intelligence (AI) communities overcome this situation to create synthetic data which is an ethical and privacy issue in the medical domain. This research introduces the CAT-U-Net framework as a new approach to overcome these limitations, which enhances feature extraction from medical images without the need for large datasets. The proposed framework adds an extra concatenation layer with downsampling parts, thereby improving its ability to learn from limited data while maintaining patient privacy. To validate, the proposed framework's robustness, different medical conditioning datasets were utilized including COVID-19, brain tumors, and wrist fractures. The framework achieved nearly 98% reconstruction accuracy, with a Dice coefficient close to 0.946. The proposed CAT-U-Net has the potential to make a big difference in medical image diagnostics in settings with limited data.
Abstract:In the dynamic and ever-changing domain of Unmanned Aerial Vehicles (UAVs), the utmost importance lies in guaranteeing resilient and lucid security measures. This study highlights the necessity of implementing a Zero Trust Architecture (ZTA) to enhance the security of unmanned aerial vehicles (UAVs), hence departing from conventional perimeter defences that may expose vulnerabilities. The Zero Trust Architecture (ZTA) paradigm requires a rigorous and continuous process of authenticating all network entities and communications. The accuracy of our methodology in detecting and identifying unmanned aerial vehicles (UAVs) is 84.59\%. This is achieved by utilizing Radio Frequency (RF) signals within a Deep Learning framework, a unique method. Precise identification is crucial in Zero Trust Architecture (ZTA), as it determines network access. In addition, the use of eXplainable Artificial Intelligence (XAI) tools such as SHapley Additive exPlanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) contributes to the improvement of the model's transparency and interpretability. Adherence to Zero Trust Architecture (ZTA) standards guarantees that the classifications of unmanned aerial vehicles (UAVs) are verifiable and comprehensible, enhancing security within the UAV field.
Abstract:In the healthcare domain, Magnetic Resonance Imaging (MRI) assumes a pivotal role, as it employs Artificial Intelligence (AI) and Machine Learning (ML) methodologies to extract invaluable insights from imaging data. Nonetheless, the imperative need for patient privacy poses significant challenges when collecting data from diverse healthcare sources. Consequently, the Deep Learning (DL) communities occasionally face difficulties detecting rare features. In this research endeavor, we introduce the Ensemble-Based Federated Learning (EBFL) Framework, an innovative solution tailored to address this challenge. The EBFL framework deviates from the conventional approach by emphasizing model features over sharing sensitive patient data. This unique methodology fosters a collaborative and privacy-conscious environment for healthcare institutions, empowering them to harness the capabilities of a centralized server for model refinement while upholding the utmost data privacy standards.Conversely, a robust ensemble architecture boasts potent feature extraction capabilities, distinguishing itself from a single DL model. This quality makes it remarkably dependable for MRI analysis. By harnessing our groundbreaking EBFL methodology, we have achieved remarkable precision in the classification of brain tumors, including glioma, meningioma, pituitary, and non-tumor instances, attaining a precision rate of 94% for the Global model and an impressive 96% for the Ensemble model. Our models underwent rigorous evaluation using conventional performance metrics such as Accuracy, Precision, Recall, and F1 Score. Integrating DL within the Federated Learning (FL) framework has yielded a methodology that offers precise and dependable diagnostics for detecting brain tumors.
Abstract:The healthcare industry has been revolutionized by the convergence of Artificial Intelligence of Medical Things (AIoMT), allowing advanced data-driven solutions to improve healthcare systems. With the increasing complexity of Artificial Intelligence (AI) models, the need for Explainable Artificial Intelligence (XAI) techniques become paramount, particularly in the medical domain, where transparent and interpretable decision-making becomes crucial. Therefore, in this work, we leverage a custom XAI framework, incorporating techniques such as Local Interpretable Model-Agnostic Explanations (LIME), SHapley Additive exPlanations (SHAP), and Gradient-weighted Class Activation Mapping (Grad-Cam), explicitly designed for the domain of AIoMT. The proposed framework enhances the effectiveness of strategic healthcare methods and aims to instill trust and promote understanding in AI-driven medical applications. Moreover, we utilize a majority voting technique that aggregates predictions from multiple convolutional neural networks (CNNs) and leverages their collective intelligence to make robust and accurate decisions in the healthcare system. Building upon this decision-making process, we apply the XAI framework to brain tumor detection as a use case demonstrating accurate and transparent diagnosis. Evaluation results underscore the exceptional performance of the XAI framework, achieving high precision, recall, and F1 scores with a training accuracy of 99% and a validation accuracy of 98%. Combining advanced XAI techniques with ensemble-based deep-learning (DL) methodologies allows for precise and reliable brain tumor diagnoses as an application of AIoMT.
Abstract:Magnetic Resonance Imaging (MRI) is a principal diagnostic approach used in the field of radiology to create images of the anatomical and physiological structure of patients. MRI is the prevalent medical imaging practice to find abnormalities in soft tissues. Traditionally they are analyzed by a radiologist to detect abnormalities in soft tissues, especially the brain. The process of interpreting a massive volume of patient's MRI is laborious. Hence, the use of Machine Learning methodologies can aid in detecting abnormalities in soft tissues with considerable accuracy. In this research, we have curated a novel dataset and developed a framework that uses Deep Transfer Learning to perform a multi-classification of tumors in the brain MRI images. In this paper, we adopted the Deep Residual Convolutional Neural Network (ResNet50) architecture for the experiments along with discriminative learning techniques to train the model. Using the novel dataset and two publicly available MRI brain datasets, this proposed approach attained a classification accuracy of 86.40% on the curated dataset, 93.80% on the Harvard Whole Brain Atlas dataset, and 97.05% accuracy on the School of Biomedical Engineering dataset. Results of our experiments significantly demonstrate our proposed framework for transfer learning is a potential and effective method for brain tumor multi-classification tasks.