Abstract:Multilingual Large Language Models (LLMs) have gained large popularity among Natural Language Processing (NLP) researchers and practitioners. These models, trained on huge datasets, show proficiency across various languages and demonstrate effectiveness in numerous downstream tasks. This paper navigates the landscape of multilingual LLMs, providing an introductory overview of their technical aspects. It explains underlying architectures, objective functions, pre-training data sources, and tokenization methods. This work explores the unique features of different model types: encoder-only (mBERT, XLM-R), decoder-only (XGLM, PALM, BLOOM, GPT-3), and encoder-decoder models (mT5, mBART). Additionally, it addresses one of the significant limitations of multilingual LLMs - the curse of multilinguality - and discusses current attempts to overcome it.
Abstract:Pre-trained Language Models (PLMs) have shown to be consistently successful in a plethora of NLP tasks due to their ability to learn contextualized representations of words (Ethayarajh, 2019). BERT (Devlin et al., 2018), ELMo (Peters et al., 2018) and other PLMs encode word meaning via textual context, as opposed to static word embeddings, which encode all meanings of a word in a single vector representation. In this work, we present a study that aims to localize where exactly in a PLM word contextualization happens. In order to find the location of this word meaning transformation, we investigate representations of polysemous words in the basic BERT uncased 12 layer architecture (Devlin et al., 2018), a masked language model trained on an additional sentence adjacency objective, using qualitative and quantitative measures.