European Commission - Joint Research Centre
Abstract:We present a tool that, from automatically recognised names, tries to infer inter-person relations in order to present associated people on maps. Based on an in-house Named Entity Recognition tool, applied on clusters of an average of 15,000 news articles per day, in 15 different languages, we build a knowledge base that allows extracting statistical co-occurrences of persons and visualising them on a per-person page or in various graphs.
Abstract:We are presenting a method to recognise geographical references in free text. Our tool must work on various languages with a minimum of language-dependent resources, except a gazetteer. The main difficulty is to disambiguate these place names by distinguishing places from persons and by selecting the most likely place out of a list of homographic place names world-wide. The system uses a number of language-independent clues and heuristics to disambiguate place name homographs. The final aim is to index texts with the countries and cities they mention and to automatically visualise this information on geographical maps using various tools.