Abstract:Finding the most probable assignment (MAP) in a general graphical model is known to be NP hard but good approximations have been attained with max-product belief propagation (BP) and its variants. In particular, it is known that using BP on a single-cycle graph or tree reweighted BP on an arbitrary graph will give the MAP solution if the beliefs have no ties. In this paper we extend the setting under which BP can be used to provably extract the MAP. We define Convex BP as BP algorithms based on a convex free energy approximation and show that this class includes ordinary BP with single-cycle, tree reweighted BP and many other BP variants. We show that when there are no ties, fixed-points of convex max-product BP will provably give the MAP solution. We also show that convex sum-product BP at sufficiently small temperatures can be used to solve linear programs that arise from relaxing the MAP problem. Finally, we derive a novel condition that allows us to derive the MAP solution even if some of the convex BP beliefs have ties. In experiments, we show that our theorems allow us to find the MAP in many real-world instances of graphical models where exact inference using junction-tree is impossible.
Abstract:Linear Programming (LP) relaxations have become powerful tools for finding the most probable (MAP) configuration in graphical models. These relaxations can be solved efficiently using message-passing algorithms such as belief propagation and, when the relaxation is tight, provably find the MAP configuration. The standard LP relaxation is not tight enough in many real-world problems, however, and this has lead to the use of higher order cluster-based LP relaxations. The computational cost increases exponentially with the size of the clusters and limits the number and type of clusters we can use. We propose to solve the cluster selection problem monotonically in the dual LP, iteratively selecting clusters with guaranteed improvement, and quickly re-solving with the added clusters by reusing the existing solution. Our dual message-passing algorithm finds the MAP configuration in protein sidechain placement, protein design, and stereo problems, in cases where the standard LP relaxation fails.
Abstract:Message-passing algorithms have emerged as powerful techniques for approximate inference in graphical models. When these algorithms converge, they can be shown to find local (or sometimes even global) optima of variational formulations to the inference problem. But many of the most popular algorithms are not guaranteed to converge. This has lead to recent interest in convergent message-passing algorithms. In this paper, we present a unified view of convergent message-passing algorithms. We present a simple derivation of an abstract algorithm, tree-consistency bound optimization (TCBO) that is provably convergent in both its sum and max product forms. We then show that many of the existing convergent algorithms are instances of our TCBO algorithm, and obtain novel convergent algorithms "for free" by exchanging maximizations and summations in existing algorithms. In particular, we show that Wainwright's non-convergent sum-product algorithm for tree based variational bounds, is actually convergent with the right update order for the case where trees are monotonic chains.