Abstract:The Dialogic Robot Competition 2023 (DRC2023) is a competition for humanoid robots (android robots that closely resemble humans) to compete in interactive capabilities. This is the third year of the competition. The top four teams from the preliminary competition held in November 2023 will compete in the final competition on Saturday, December 23. The task for the interactive robots is to recommend a tourism plan for a specific region. The robots can employ multimodal behaviors, such as language and gestures, to engage the user in the sightseeing plan they recommend. In the preliminary round, the interactive robots were stationed in a travel agency office, where visitors conversed with them and rated their performance via a questionnaire. In the final round, dialogue researchers and tourism industry professionals interacted with the robots and evaluated their performance. This event allows visitors to gain insights into the types of dialogue services that future dialogue robots should offer. The proceedings include papers on dialogue systems developed by the 12 teams participating in DRC2023, as well as an overview of the papers provided by all the teams.
Abstract:We have held dialogue robot competitions in 2020 and 2022 to compare the performances of interactive robots using an android that closely resembles a human. In 2023, the third competition DRC2023 was held. The task of DRC2023 was designed to be more challenging than the previous travel agent dialogue tasks. Since anyone can now develop a dialogue system using LLMs, the participating teams are required to develop a system that effectively uses information about the situation on the spot (real-time information), which is not handled by ChatGPT and other systems. DRC2023 has two rounds, a preliminary round and the final round as well as the previous competitions. The preliminary round has held on Oct.27 -- Nov.20, 2023 at real travel agency stores. The final round will be held on December 23, 2023. This paper provides an overview of the task settings and evaluation method of DRC2023 and the preliminary round results.
Abstract:Expressing various facial emotions is an important social ability for efficient communication between humans. A key challenge in human-robot interaction research is providing androids with the ability to make various human-like facial expressions for efficient communication with humans. The android Nikola, we have developed, is equipped with many actuators for facial muscle control. While this enables Nikola to simulate various human expressions, it also complicates identification of the optimal parameters for producing desired expressions. Here, we propose a novel method that automatically optimizes the facial expressions of our android. We use a machine vision algorithm to evaluate the magnitudes of seven basic emotions, and employ the Bayesian Optimization algorithm to identify the parameters that produce the most convincing facial expressions. Evaluations by naive human participants demonstrate that our method improves the rated strength of the android's facial expressions of anger, disgust, sadness, and surprise compared with the previous method that relied on Ekman's theory and parameter adjustments by a human expert.
Abstract:Although many competitions have been held on dialogue systems in the past, no competition has been organized specifically for dialogue with humanoid robots. As the first such attempt in the world, we held a dialogue robot competition in 2020 to compare the performances of interactive robots using an android that closely resembles a human. Dialogue Robot Competition 2022 (DRC2022) was the second competition, held in August 2022. The task and regulations followed those of the first competition, while the evaluation method was improved and the event was internationalized. The competition has two rounds, a preliminary round and the final round. In the preliminary round, twelve participating teams competed in performance of a dialogue robot in the manner of a field experiment, and then three of those teams were selected as finalists. The final round will be held on October 25, 2022, in the Robot Competition session of IROS2022. This paper provides an overview of the task settings and evaluation method of DRC2022 and the results of the preliminary round.