Abstract:This paper proposes a fast dual-layer lossless coding for high dynamic range images (HDRIs) in the Radiance format. The coding, which consists of a base layer and a lossless enhancement layer, provides a standard dynamic range image (SDRI) without requiring an additional algorithm at the decoder and can losslessly decode the HDRI by adding the residual signals (residuals) between the HDRI and SDRI to the SDRI, if desired. To suppress the dynamic range of the residuals in the enhancement layer, the coding directly uses the mantissa and exponent information from the Radiance format. To further reduce the residual energy, each mantissa is modeled (estimated) as a linear function, i.e., a simple linear regression, of the encoded-decoded SDRI in each region with the same exponent. This is called simple linear regressive mantissa estimator. Experimental results show that, compared with existing methods, our coding reduces the average bitrate by approximately $1.57$-$6.68$ % and significantly reduces the average encoder implementation time by approximately $87.13$-$98.96$ %.
Abstract:This paper proposes a novel multi-exposure image fusion method based on exposure compensation. Multi-exposure image fusion is a method to produce images without color saturation regions, by using photos with different exposures. However, in conventional works, it is unclear how to determine appropriate exposure values, and moreover, it is difficult to set appropriate exposure values at the time of photographing due to time constraints. In the proposed method, the luminance of the input multi-exposure images is adjusted on the basis of the relationship between exposure values and pixel values, where the relationship is obtained by assuming that a digital camera has a linear response function. The use of a local contrast enhancement method is also considered to improve input multi-exposure images. The compensated images are finally combined by one of existing multi-exposure image fusion methods. In some experiments, the effectiveness of the proposed method are evaluated in terms of the tone mapped image quality index, statistical naturalness, and discrete entropy, by comparing the proposed one with conventional ones.