Abstract:When training data are distributed across{ time or space,} covariate shift across fragments of training data biases cross-validation, compromising model selection and assessment. We present \textit{Fragmentation-Induced covariate-shift Remediation} ($FIcsR$), which minimizes an $f$-divergence between a fragment's covariate distribution and that of the standard cross-validation baseline. We s{how} an equivalence with popular importance-weighting methods. {The method}'s numerical solution poses a computational challenge owing to the overparametrized nature of a neural network, and we derive a Fisher Information approximation. When accumulated over fragments, this provides a global estimate of the amount of shift remediation thus far needed, and we incorporate that as a prior via the minimization objective. In the paper, we run extensive classification experiments on multiple data classes, over $40$ datasets, and with data batched over multiple sequence lengths. We extend the study to the $k$-fold cross-validation setting through a similar set of experiments. An ablation study exposes the method to varying amounts of shift and demonstrates slower degradation with $FIcsR$ in place. The results are promising under all these conditions; with improved accuracy against batch and fold state-of-the-art by more than $5\%$ and $10\%$, respectively.
Abstract:New software and updates are downloaded by end users every day. Each dowloaded software has associated with it an End Users License Agreements (EULA), but this is rarely read. An EULA includes information to avoid legal repercussions. However,this proposes a host of potential problems such as spyware or producing an unwanted affect in the target system. End users do not read these EULA's because of length of the document and users find it extremely difficult to understand. Text summarization is one of the relevant solution to these kind of problems. This require a solution which can summarize the EULA and classify the EULA as "Benign" or "Malicious". We propose a solution in which we have summarize the EULA and classify the EULA as "Benign" or "Malicious". We extract EULA text of different sofware's then we classify the text using eight different supervised classifiers. we use ensemble learning to classify the EULA as benign or malicious using five different text summarization methods. An accuracy of $95.8$\% shows the effectiveness of the presented approach.