Abstract:Previous video-based human pose estimation methods have shown promising results by leveraging aggregated features of consecutive frames. However, most approaches compromise accuracy to mitigate jitter or do not sufficiently comprehend the temporal aspects of human motion. Furthermore, occlusion increases uncertainty between consecutive frames, which results in unsmooth results. To address these issues, we design an architecture that exploits the keypoint kinematic features with the following components. First, we effectively capture the temporal features by leveraging individual keypoint's velocity and acceleration. Second, the proposed hierarchical transformer encoder aggregates spatio-temporal dependencies and refines the 2D or 3D input pose estimated from existing estimators. Finally, we provide an online cross-supervision between the refined input pose generated from the encoder and the final pose from our decoder to enable joint optimization. We demonstrate comprehensive results and validate the effectiveness of our model in various tasks: 2D pose estimation, 3D pose estimation, body mesh recovery, and sparsely annotated multi-human pose estimation. Our code is available at https://github.com/KyungMinJin/HANet.
Abstract:Temporal action localization (TAL) is a task of identifying a set of actions in a video, which involves localizing the start and end frames and classifying each action instance. Existing methods have addressed this task by using predefined anchor windows or heuristic bottom-up boundary-matching strategies, which are major bottlenecks in inference time. Additionally, the main challenge is the inability to capture long-range actions due to a lack of global contextual information. In this paper, we present a novel anchor-free framework, referred to as HTNet, which predicts a set of <start time, end time, class> triplets from a video based on a Transformer architecture. After the prediction of coarse boundaries, we refine it through a background feature sampling (BFS) module and hierarchical Transformers, which enables our model to aggregate global contextual information and effectively exploit the inherent semantic relationships in a video. We demonstrate how our method localizes accurate action instances and achieves state-of-the-art performance on two TAL benchmark datasets: THUMOS14 and ActivityNet 1.3.