Abstract:Skip connections are fundamental architecture designs for modern deep neural networks (DNNs) such as CNNs and ViTs. While they help improve model performance significantly, we identify a vulnerability associated with skip connections to Model Inversion (MI) attacks, a type of privacy attack that aims to reconstruct private training data through abusive exploitation of a model. In this paper, as a pioneer work to understand how DNN architectures affect MI, we study the impact of skip connections on MI. We make the following discoveries: 1) Skip connections reinforce MI attacks and compromise data privacy. 2) Skip connections in the last stage are the most critical to attack. 3) RepVGG, an approach to remove skip connections in the inference-time architectures, could not mitigate the vulnerability to MI attacks. 4) Based on our findings, we propose MI-resilient architecture designs for the first time. Without bells and whistles, we show in extensive experiments that our MI-resilient architectures can outperform state-of-the-art (SOTA) defense methods in MI robustness. Furthermore, our MI-resilient architectures are complementary to existing MI defense methods. Our project is available at https://Pillowkoh.github.io/projects/RoLSS/
Abstract:Model Inversion (MI) attacks aim to reconstruct private training data by abusing access to machine learning models. Contemporary MI attacks have achieved impressive attack performance, posing serious threats to privacy. Meanwhile, all existing MI defense methods rely on regularization that is in direct conflict with the training objective, resulting in noticeable degradation in model utility. In this work, we take a different perspective, and propose a novel and simple Transfer Learning-based Defense against Model Inversion (TL-DMI) to render MI-robust models. Particularly, by leveraging TL, we limit the number of layers encoding sensitive information from private training dataset, thereby degrading the performance of MI attack. We conduct an analysis using Fisher Information to justify our method. Our defense is remarkably simple to implement. Without bells and whistles, we show in extensive experiments that TL-DMI achieves state-of-the-art (SOTA) MI robustness. Our code, pre-trained models, demo and inverted data are available at: https://hosytuyen.github.io/projects/TL-DMI