Abstract:Quantum Natural Language Processing (QNLP) is taking huge leaps in solving the shortcomings of classical Natural Language Processing (NLP) techniques and moving towards a more "Explainable" NLP system. The current literature around QNLP focuses primarily on implementing QNLP techniques in sentences in the English language. In this paper, we propose to enable the QNLP approach to HINDI, which is the third most spoken language in South Asia. We present the process of building the parameterized quantum circuits required to undertake QNLP on Hindi sentences. We use the pregroup representation of Hindi and the DisCoCat framework to draw sentence diagrams. Later, we translate these diagrams to Parameterised Quantum Circuits based on Instantaneous Quantum Polynomial (IQP) style ansatz. Using these parameterized quantum circuits allows one to train grammar and topic-aware sentence classifiers for the Hindi Language.
Abstract:In recent years, there has been a lot of focus on offensive content. The amount of offensive content generated by social media is increasing at an alarming rate. This created a greater need to address this issue than ever before. To address these issues, the organizers of "Dravidian-Code Mixed HASOC-2020" have created two challenges. Task 1 involves identifying offensive content in Malayalam data, whereas Task 2 includes Malayalam and Tamil Code Mixed Sentences. Our team participated in Task 2. In our suggested model, we experiment with multilingual BERT to extract features, and three different classifiers are used on extracted features. Our model received a weighted F1 score of 0.70 for Malayalam data and was ranked fifth; we also received a weighted F1 score of 0.573 for Tamil Code Mixed data and were ranked eleventh.
Abstract:The product reviews are posted online in the hundreds and even in the thousands for some popular products. Handling such a large volume of continuously generated online content is a challenging task for buyers, sellers, and even researchers. The purpose of this study is to rank the overwhelming number of reviews using their predicted helpfulness score. The helpfulness score is predicted using features extracted from review text data, product description data and customer question-answer data of a product using random-forest classifier and gradient boosting regressor. The system is made to classify the reviews into low or high quality by random-forest classifier. The helpfulness score of the high-quality reviews is only predicted using gradient boosting regressor. The helpfulness score of the low-quality reviews is not calculated because they are never going to be in the top k reviews. They are just added at the end of the review list to the review-listing website. The proposed system provides fair review placement on review listing pages and making all high-quality reviews visible to customers on the top. The experimental results on data from two popular Indian e-commerce websites validate our claim, as 3-4 new high-quality reviews are placed in the top ten reviews along with 5-6 old reviews based on review helpfulness. Our findings indicate that inclusion of features from product description data and customer question-answer data improves the prediction accuracy of the helpfulness score.