Abstract:The integration of fine-scale multispectral imagery with deep learning models has revolutionized land use and land cover (LULC) classification. However, the atmospheric effects present in Top-of-Atmosphere sensor measured Digital Number values must be corrected to retrieve accurate Bottom-of-Atmosphere surface reflectance for reliable analysis. This study employs look-up-table-based radiative transfer simulations to estimate the atmospheric path reflectance and transmittance for atmospherically correcting high-resolution CARTOSAT-3 Multispectral (MX) imagery for several Indian cities. The corrected surface reflectance data were subsequently used in supervised and semi-supervised segmentation models, demonstrating stability in multi-class (buildings, roads, trees and water bodies) LULC segmentation accuracy, particularly in scenarios with sparsely labelled data.
Abstract:Land Use Land Cover (LULC) mapping is a vital tool for urban and resource planning, playing a key role in the development of innovative and sustainable cities. This study introduces a semi-supervised segmentation model for LULC prediction using high-resolution satellite images with a vast diversity of data distributions in different areas of India. Our approach ensures a robust generalization across different types of buildings, roads, trees, and water bodies within these distinct areas. We propose a modified Cross Pseudo Supervision framework to train image segmentation models on sparsely labelled data. The proposed framework addresses the limitations of the famous 'Cross Pseudo Supervision' technique for semi-supervised learning, specifically tackling the challenges of training segmentation models on noisy satellite image data with sparse and inaccurate labels. This comprehensive approach significantly enhances the accuracy and utility of LULC mapping, providing valuable insights for urban and resource planning applications.
Abstract:Land Use Land Cover (LULC) mapping is essential for urban and resource planning and is one of the key elements in developing smart and sustainable cities. This study introduces a semi-supervised segmentation model for LULC prediction using high-resolution satellite images with a huge diversity in data distributions in different areas from the country of India. Our approach ensures a robust generalization across different types of buildings, roads, trees, and water bodies within these distinct areas. We propose a modified Cross Pseudo Supervision framework to train image segmentation models on sparsely labelled data. The proposed framework addresses the limitations of the popular "Cross Pseudo Supervision" technique for semi-supervised learning. Specifically, it tackles the challenges of training segmentation models on noisy satellite image data with sparse and inaccurate labels. This comprehensive approach enhances the accuracy and utility of LULC mapping for various urban planning applications.
Abstract:Quantum Natural Language Processing (QNLP) is taking huge leaps in solving the shortcomings of classical Natural Language Processing (NLP) techniques and moving towards a more "Explainable" NLP system. The current literature around QNLP focuses primarily on implementing QNLP techniques in sentences in the English language. In this paper, we propose to enable the QNLP approach to HINDI, which is the third most spoken language in South Asia. We present the process of building the parameterized quantum circuits required to undertake QNLP on Hindi sentences. We use the pregroup representation of Hindi and the DisCoCat framework to draw sentence diagrams. Later, we translate these diagrams to Parameterised Quantum Circuits based on Instantaneous Quantum Polynomial (IQP) style ansatz. Using these parameterized quantum circuits allows one to train grammar and topic-aware sentence classifiers for the Hindi Language.