Abstract:Humanoid robots toward human-level dexterity require robotic hands capable of simultaneously providing high grasping force, rapid actuation speeds, multiple degrees of freedom, and lightweight structures within human-like size constraints. Meeting these conflicting requirements remains challenging, as satisfying this combination typically necessitates heavier actuators and bulkier transmission systems, significantly restricting the payload capacity of robot arms. In this letter, we present a lightweight anthropomorphic hand actuated by Bowden cables, which uniquely combines rolling-contact joint optimization with antagonistic cable actuation, enabling single-motor-per-joint control with negligible cable-length deviation. By relocating the actuator module to the torso, the design substantially reduces distal mass while maintaining anthropomorphic scale and dexterity. Additionally, this antagonistic cable actuation eliminates the need for synchronization between motors. Using the proposed methods, the hand assembly with a distal mass of 236g (excluding remote actuators and Bowden sheaths) demonstrated reliable execution of dexterous tasks, exceeding 18N fingertip force and lifting payloads over one hundred times its own mass. Furthermore, robustness was validated through Cutkosky taxonomy grasps and trajectory consistency under perturbed actuator-hand transformations.




Abstract:This paper introduces an innovative application of foundation models, enabling Unmanned Ground Vehicles (UGVs) equipped with an RGB-D camera to navigate to designated destinations based on human language instructions. Unlike learning-based methods, this approach does not require prior training but instead leverages existing foundation models, thus facilitating generalization to novel environments. Upon receiving human language instructions, these are transformed into a 'cognitive route description' using a large language model (LLM)-a detailed navigation route expressed in human language. The vehicle then decomposes this description into landmarks and navigation maneuvers. The vehicle also determines elevation costs and identifies navigability levels of different regions through a terrain segmentation model, GANav, trained on open datasets. Semantic elevation costs, which take both elevation and navigability levels into account, are estimated and provided to the Model Predictive Path Integral (MPPI) planner, responsible for local path planning. Concurrently, the vehicle searches for target landmarks using foundation models, including YOLO-World and EfficientViT-SAM. Ultimately, the vehicle executes the navigation commands to reach the designated destination, the final landmark. Our experiments demonstrate that this application successfully guides UGVs to their destinations following human language instructions in novel environments, such as unfamiliar terrain or urban settings.