Abstract:Data-free quantization (DFQ) is a technique that creates a lightweight network from its full-precision counterpart without the original training data, often through a synthetic dataset. Although several DFQ methods have been proposed for vision transformer (ViT) architectures, they fail to achieve efficacy in low-bit settings. Examining the existing methods, we identify that their synthetic data produce misaligned attention maps, while those of the real samples are highly aligned. From the observation of aligned attention, we find that aligning attention maps of synthetic data helps to improve the overall performance of quantized ViTs. Motivated by this finding, we devise \aname, a novel DFQ method designed for ViTs that focuses on inter-head attention similarity. First, we generate synthetic data by aligning head-wise attention responses in relation to spatial query patches. Then, we apply head-wise structural attention distillation to align the attention maps of the quantized network to those of the full-precision teacher. The experimental results show that the proposed method significantly outperforms baselines, setting a new state-of-the-art performance for data-free ViT quantization.