Abstract:Deep learning has shown great potential in assisting radiologists in reading chest X-ray (CXR) images, but its need for expensive annotations for improving performance prevents widespread clinical application. Visual language pre-training (VLP) can alleviate the burden and cost of annotation by leveraging routinely generated reports for radiographs, which exist in large quantities as well as in paired form (imagetext pairs). Additionally, extensions to localization-aware VLPs are being proposed to address the needs of accurate localization of abnormalities for CAD in CXR. However, we find that the formulation proposed by locality-aware VLP literatures actually leads to loss in spatial relationships required for downstream localization tasks. Therefore, we propose Empowering Locality of VLP with Intra-modal Similarity, ELVIS, a VLP aware of intra-modal locality, to better preserve the locality within radiographs or reports, which enhances the ability to comprehend location references in text reports. Our locality-aware VLP method significantly outperforms state-of-the art baselines in multiple segmentation tasks and the MS-CXR phrase grounding task. Qualitatively, ELVIS is able to focus well on regions of interest described in the report text compared to prior approaches, allowing for enhanced interpretability.
Abstract:This work presents six structural quality metrics that can measure the quality of knowledge graphs and analyzes five cross-domain knowledge graphs on the web (Wikidata, DBpedia, YAGO, Google Knowledge Graph, Freebase) as well as 'Raftel', Naver's integrated knowledge graph. The 'Good Knowledge Graph' should define detailed classes and properties in its ontology so that knowledge in the real world can be expressed abundantly. Also, instances and RDF triples should use the classes and properties actively. Therefore, we tried to examine the internal quality of knowledge graphs numerically by focusing on the structure of the ontology, which is the schema of knowledge graphs, and the degree of use thereof. As a result of the analysis, it was possible to find the characteristics of a knowledge graph that could not be known only by scale-related indicators such as the number of classes and properties.