Abstract:Generative Adversarial Networks (GANs) are a powerful class of generative models. Despite their successes, the most appropriate choice of a GAN network architecture is still not well understood. GAN models for image synthesis have adopted a deep convolutional network architecture, which eliminates or minimizes the use of fully connected and pooling layers in favor of convolution layers in the generator and discriminator of GANs. In this paper, we demonstrate that a convolution network architecture utilizing deep fully connected layers and pooling layers can be more effective than the traditional convolution-only architecture, and we propose FCC-GAN, a fully connected and convolutional GAN architecture. Models based on our FCC-GAN architecture learn both faster than the conventional architecture and also generate higher quality of samples. We demonstrate the effectiveness and stability of our approach across four popular image datasets.
Abstract:Generative Adversarial Networks (GANs) are an elegant mechanism for data generation. However, a key challenge when using GANs is how to best measure their ability to generate realistic data. In this paper, we demonstrate that an intrinsic dimensional characterization of the data space learned by a GAN model leads to an effective evaluation metric for GAN quality. In particular, we propose a new evaluation measure, CrossLID, that assesses the local intrinsic dimensionality (LID) of real-world data with respect to neighborhoods found in GAN-generated samples. Intuitively, CrossLID measures the degree to which manifolds of two data distributions coincide with each other. In experiments on 4 benchmark image datasets, we compare our proposed measure to several state-of-the-art evaluation metrics. Our experiments show that CrossLID is strongly correlated with the progress of GAN training, is sensitive to mode collapse, is robust to small-scale noise and image transformations, and robust to sample size. Furthermore, we show how CrossLID can be used within the GAN training process to improve generation quality.