Abstract:Causal dynamics learning has recently emerged as a promising approach to enhancing robustness in reinforcement learning (RL). Typically, the goal is to build a dynamics model that makes predictions based on the causal relationships among the entities. Despite the fact that causal connections often manifest only under certain contexts, existing approaches overlook such fine-grained relationships and lack a detailed understanding of the dynamics. In this work, we propose a novel dynamics model that infers fine-grained causal structures and employs them for prediction, leading to improved robustness in RL. The key idea is to jointly learn the dynamics model with a discrete latent variable that quantizes the state-action space into subgroups. This leads to recognizing meaningful context that displays sparse dependencies, where causal structures are learned for each subgroup throughout the training. Experimental results demonstrate the robustness of our method to unseen states and locally spurious correlations in downstream tasks where fine-grained causal reasoning is crucial. We further illustrate the effectiveness of our subgroup-based approach with quantization in discovering fine-grained causal relationships compared to prior methods.
Abstract:Human perception involves discerning complex multi-object scenes into time-static object appearance (\ie, size, shape, color) and time-varying object motion (\ie, location, velocity, acceleration). This innate ability to unconsciously understand the environment is the motivation behind the success of dynamics modeling. Object-centric representations have emerged as a promising tool for dynamics prediction, yet they primarily focus on the objects' appearance, often overlooking other crucial attributes. In this paper, we propose Object-Centric Kinematics (OCK), a framework for dynamics prediction leveraging object-centric representations. Our model utilizes a novel component named object kinematics, which comprises low-level structured states of objects' position, velocity, and acceleration. The object kinematics are obtained via either implicit or explicit approaches, enabling comprehensive spatiotemporal object reasoning, and integrated through various transformer mechanisms, facilitating effective object-centric dynamics modeling. Our model demonstrates superior performance when handling objects and backgrounds in complex scenes characterized by a wide range of object attributes and dynamic movements. Moreover, our model demonstrates generalization capabilities across diverse synthetic environments, highlighting its potential for broad applicability in vision-related tasks.