Abstract:Patients with metastatic breast cancer (mBC) undergo continuous medical imaging during treatment, making accurate lesion detection and monitoring over time critical for clinical decisions. Predicting drug response from post-treatment data is essential for personalized care and pharmacological research. In collaboration with the U.S. Food and Drug Administration and Novartis Pharmaceuticals, we analyzed serial chest CT scans from two large-scale Phase III trials, MONALEESA 3 and MONALEESA 7. This paper has two objectives (a) Data Structuring developing a Registration Aided Automated Correspondence (RAMAC) algorithm for precise lesion tracking in longitudinal CT data, and (b) Survival Analysis creating imaging features and models from RAMAC structured data to predict patient outcomes. The RAMAC algorithm uses a two phase pipeline: three dimensional rigid registration aligns CT images, and a distance metric-based Hungarian algorithm tracks lesion correspondence. Using structured data, we developed interpretable models to assess progression-free survival (PFS) in mBC patients by combining baseline radiomics, post-treatment changes (Weeks 8, 16, 24), and demographic features. Radiomics effects were studied across time points separately and through a non-correlated additive framework. Radiomics features were reduced using (a) a regularized (L1-penalized) additive Cox proportional hazards model, and (b) variable selection via best subset selection. Performance, measured using the concordance index (C-index), improved with additional time points. Joint modeling, considering correlations among radiomics effects over time, provided insights into relationships between longitudinal radiomics and survival outcomes.
Abstract:Patients diagnosed with metastatic breast cancer (mBC) typically undergo several radiographic assessments during their treatment. mBC often involves multiple metastatic lesions in different organs, it is imperative to accurately track and assess these lesions to gain a comprehensive understanding of the disease's response to treatment. Computerized analysis methods that rely on lesion-level tracking have often used manual matching of corresponding lesions, a time-consuming process that is prone to errors. This paper introduces an automated lesion correspondence algorithm designed to precisely track both targets' lesions and non-targets' lesions in longitudinal data. Here we demonstrate the applicability of our algorithm on the anonymized data from two Phase III trials. The dataset contains imaging data of patients for different follow-up timepoints and the radiologist annotations for the patients enrolled in the trials. Target and non-target lesions are annotated by either one or two groups of radiologists. To facilitate accurate tracking, we have developed a registration-assisted lesion correspondence algorithm. The algorithm employs a sequential two-step pipeline: (a) Firstly, an adaptive Hungarian algorithm is used to establish correspondence among lesions within a single volumetric image series which have been annotated by multiple radiologists at a specific timepoint. (b) Secondly, after establishing correspondence and assigning unique names to the lesions, three-dimensional rigid registration is applied to various image series at the same timepoint. Registration is followed by ongoing lesion correspondence based on the adaptive Hungarian algorithm and updating lesion names for accurate tracking. Validation of our automated lesion correspondence algorithm is performed through triaxial plots based on axial, sagittal, and coronal views, confirming its efficacy in matching lesions.
Abstract:This paper discusses the possible observation of an integrated gear tooth crack analysis procedure that employs the combined approach of variable mode decomposition (VMD) and time synchronous averaging (TSA) based on the coupled electromechanical gearbox (CEMG) system. This paper also incorporates the modified Lagrangian formulation to model the CEMG system by considering Rayleigh's dissipative potential. An analytical improved time-varying mesh stiffness (IAM-TVMS) with different levels of gear tooth crack depts is also incorporated into the CEMG system to inspect the influence of cracks on the system's dynamic behavior. Dynamic responses of the CEMG system with different tooth crack levels have been used for further investigations. For the first time, the integrated approach of variable mode decomposition (VMD) and time-synchronous averaging (TSA) has been presented to analyze the dynamic behaviour of CEMG systems at the different gear tooth cracks have been experienced as non-stationary and complex vibration signals with noise. Based on the integrated approach of VMD-TSA, two types of nonlinear features, i.e., Lyapunov Exponent (LE) and Correlation Dimension (CD), were calculated to predict the level of chaotic vibration and complexity of the CEMG system at the different levels of gear tooth cracks. Also, the LE and CD are used as chaotic behaviour features to predict the gear tooth crack propagation level. The results of the proposed approach show significant improvements in the gear tooth crack analysis based on the chaotic features. Also, this is one of the first attempts to study the CEMG system using chaotic features based on the combined approach of VMD-TSA.
Abstract:Gearbox fault diagnosis is one of the most important parts in any industrial systems. Failure of components inside gearbox can lead to a catastrophic failure, uneven breakdown, and financial losses in industrial organization. In that case intelligent maintenance of the gearbox comes into context. This paper presents an integrated gearbox fault diagnosis approach which can easily deploy in online condition monitoring. This work introduces a nonparametric data preprocessing technique i.e., calculus enhanced energy operator (CEEO) to preserve the characteristics frequencies in the noisy and inferred vibrational signal. A set of time domain and spectral domain features are calculated from the raw and CEEO vibration signal and inputted to the multiclass support vector machine (MCSVM) to diagnose the faults on the system. An effective comparison between raw signal and CEEO signal are presented to show the impact of CEEO in gearbox fault diagnosis. The obtained results of this work look very promising and can be implemented in any type of industrial system due to its nonparametric nature.