Abstract:We study the problem of automatically annotating relevant numerals (GAAP metrics) occurring in the financial documents with their corresponding XBRL tags. Different from prior works, we investigate the feasibility of solving this extreme classification problem using a generative paradigm through instruction tuning of Large Language Models (LLMs). To this end, we leverage metric metadata information to frame our target outputs while proposing a parameter efficient solution for the task using LoRA. We perform experiments on two recently released financial numeric labeling datasets. Our proposed model, FLAN-FinXC, achieves new state-of-the-art performances on both the datasets, outperforming several strong baselines. We explain the better scores of our proposed model by demonstrating its capability for zero-shot as well as the least frequently occurring tags. Also, even when we fail to predict the XBRL tags correctly, our generated output has substantial overlap with the ground-truth in majority of the cases.
Abstract:While automatic summarization techniques have made significant advancements, their primary focus has been on summarizing short news articles or documents that have clear structural patterns like scientific articles or government reports. There has not been much exploration into developing efficient methods for summarizing financial documents, which often contain complex facts and figures. Here, we study the problem of bullet point summarization of long Earning Call Transcripts (ECTs) using the recently released ECTSum dataset. We leverage an unsupervised question-based extractive module followed by a parameter efficient instruction-tuned abstractive module to solve this task. Our proposed model FLAN-FinBPS achieves new state-of-the-art performances outperforming the strongest baseline with 14.88% average ROUGE score gain, and is capable of generating factually consistent bullet point summaries that capture the important facts discussed in the ECTs.
Abstract:The U.S. Securities and Exchange Commission (SEC) mandates all public companies to file periodic financial statements that should contain numerals annotated with a particular label from a taxonomy. In this paper, we formulate the task of automating the assignment of a label to a particular numeral span in a sentence from an extremely large label set. Towards this task, we release a dataset, Financial Numeric Extreme Labelling (FNXL), annotated with 2,794 labels. We benchmark the performance of the FNXL dataset by formulating the task as (a) a sequence labelling problem and (b) a pipeline with span extraction followed by Extreme Classification. Although the two approaches perform comparably, the pipeline solution provides a slight edge for the least frequent labels.