Abstract:This study explored the application of portable X-ray fluorescence (PXRF) spectrometry and soil image analysis to rapidly assess soil fertility, focusing on critical parameters such as available B, organic carbon (OC), available Mn, available S, and the sulfur availability index (SAI). Analyzing 1,133 soil samples from various agro-climatic zones in Eastern India, the research combined color and texture features from microscopic soil images, PXRF data, and auxiliary soil variables (AVs) using a Random Forest model. Results indicated that integrating image features (IFs) with auxiliary variables (AVs) significantly enhanced prediction accuracy for available B (R^2 = 0.80) and OC (R^2 = 0.88). A data fusion approach, incorporating IFs, AVs, and PXRF data, further improved predictions for available Mn and SAI with R^2 values of 0.72 and 0.70, respectively. The study demonstrated how these integrated technologies have the potential to provide quick and affordable options for soil testing, opening up access to more sophisticated prediction models and a better comprehension of the fertility and health of the soil. Future research should focus on the application of deep learning models on a larger dataset of soil images, developed using soils from a broader range of agro-climatic zones under field condition.
Abstract:Effective utilization of photovoltaic (PV) plants requires weather variability robust global solar radiation (GSR) forecasting models. Random weather turbulence phenomena coupled with assumptions of clear sky model as suggested by Hottel pose significant challenges to parametric & non-parametric models in GSR conversion rate estimation. Also, a decent GSR estimate requires costly high-tech radiometer and expert dependent instrument handling and measurements, which are subjective. As such, a computer aided monitoring (CAM) system to evaluate PV plant operation feasibility by employing smart grid past data analytics and deep learning is developed. Our algorithm, SolarisNet is a 6-layer deep neural network trained on data collected at two weather stations located near Kalyani metrological site, West Bengal, India. The daily GSR prediction performance using SolarisNet outperforms the existing state of art and its efficacy in inferring past GSR data insights to comprehend daily and seasonal GSR variability along with its competence for short term forecasting is discussed.
Abstract:CT scan images of human brain of a particular patient in different cross sections are taken, on which wavelet transform and multi-fractal analysis are applied. The vertical and horizontal unfolding of images are done before analyzing these images. A systematic investigation of de-noised CT scan images of human brain in different cross-sections are carried out through wavelet normalized energy and wavelet semi-log plots, which clearly points out the mismatch between results of vertical and horizontal unfolding. The mismatch of results confirms the heterogeneity in spatial domain. Using the multi-fractal de-trended fluctuation analysis (MFDFA), the mismatch between the values of Hurst exponent and width of singularity spectrum by vertical and horizontal unfolding confirms the same.