Abstract:We introduce a transfer learning framework for regression that leverages heterogeneous source domains to improve predictive performance in a data-scarce target domain. Our approach learns a conditional generative model separately for each source domain and calibrates the generated responses to the target domain via conditional quantile matching. This distributional alignment step corrects general discrepancies between source and target domains without imposing restrictive assumptions such as covariate or label shift. The resulting framework provides a principled and flexible approach to high-quality data augmentation for downstream learning tasks in the target domain. From a theoretical perspective, we show that an empirical risk minimizer (ERM) trained on the augmented dataset achieves a tighter excess risk bound than the target-only ERM under mild conditions. In particular, we establish new convergence rates for the quantile matching estimator that governs the transfer bias-variance tradeoff. From a practical perspective, extensive simulations and real data applications demonstrate that the proposed method consistently improves prediction accuracy over target-only learning and competing transfer learning methods.
Abstract:Distribution shifts are ubiquitous in real-world machine learning applications, posing a challenge to the generalization of models trained on one data distribution to another. We focus on scenarios where data distributions vary across multiple segments of the entire population and only make local assumptions about the differences between training and test (deployment) distributions within each segment. We propose a two-stage multiply robust estimation method to improve model performance on each individual segment for tabular data analysis. The method involves fitting a linear combination of the based models, learned using clusters of training data from multiple segments, followed by a refinement step for each segment. Our method is designed to be implemented with commonly used off-the-shelf machine learning models. We establish theoretical guarantees on the generalization bound of the method on the test risk. With extensive experiments on synthetic and real datasets, we demonstrate that the proposed method substantially improves over existing alternatives in prediction accuracy and robustness on both regression and classification tasks. We also assess its effectiveness on a user city prediction dataset from a large technology company.