Abstract:Computational historical linguistics seeks to systematically understand processes of sound change, including during periods at which little to no formal recording of language is attested. At the same time, few computational resources exist which deeply explore phonological and morphological connections between proto-languages and their descendants. This is particularly true for the family of Italic languages. To assist historical linguists in the study of Italic sound change, we introduce the Proto-Italic to Latin (PILA) dataset, which consists of roughly 3,000 pairs of forms from Proto-Italic and Latin. We provide a detailed description of how our dataset was created and organized. Then, we exhibit PILA's value in two ways. First, we present baseline results for PILA on a pair of traditional computational historical linguistics tasks. Second, we demonstrate PILA's capability for enhancing other historical-linguistic datasets through a dataset compatibility study.
Abstract:This paper describes submissions from the team Nostra Domina to the EvaLatin 2024 shared task of emotion polarity detection. Given the low-resource environment of Latin and the complexity of sentiment in rhetorical genres like poetry, we augmented the available data through automatic polarity annotation. We present two methods for doing so on the basis of the $k$-means algorithm, and we employ a variety of Latin large language models (LLMs) in a neural architecture to better capture the underlying contextual sentiment representations. Our best approach achieved the second highest macro-averaged Macro-$F_1$ score on the shared task's test set.
Abstract:Rhetoric, both spoken and written, involves not only content but also style. One common stylistic tool is $\textit{parallelism}$: the juxtaposition of phrases which have the same sequence of linguistic ($\textit{e.g.}$, phonological, syntactic, semantic) features. Despite the ubiquity of parallelism, the field of natural language processing has seldom investigated it, missing a chance to better understand the nature of the structure, meaning, and intent that humans convey. To address this, we introduce the task of $\textit{rhetorical parallelism detection}$. We construct a formal definition of it; we provide one new Latin dataset and one adapted Chinese dataset for it; we establish a family of metrics to evaluate performance on it; and, lastly, we create baseline systems and novel sequence labeling schemes to capture it. On our strictest metric, we attain $F_{1}$ scores of $0.40$ and $0.43$ on our Latin and Chinese datasets, respectively.