Abstract:Deep representation learning using triplet network for classification suffers from a lack of theoretical foundation and difficulty in tuning both the network and classifiers for performance. To address the problem, local-margin triplet loss along with local positive and negative mining strategy is proposed with theory on how the strategy integrate nearest-neighbor hyper-parameter with triplet learning to increase subsequent classification performance. Results in experiments with 2 public datasets, MNIST and Cifar-10, and 2 small medical image datasets demonstrate that proposed strategy outperforms end-to-end softmax and typical triplet loss in settings without data augmentation while maintaining utility of transferable feature for related tasks. The method serves as a good performance baseline where end-to-end methods encounter difficulties such as small sample data with limited allowable data augmentation.
Abstract:Multi-organ segmentation in whole-body computed tomography (CT) is a constant pre-processing step which finds its application in organ-specific image retrieval, radiotherapy planning, and interventional image analysis. We address this problem from an organ-specific shape-prior learning perspective. We introduce the idea of complementary-task learning to enforce shape-prior leveraging the existing target labels. We propose two complementary-tasks namely i) distance map regression and ii) contour map detection to explicitly encode the geometric properties of each organ. We evaluate the proposed solution on the public VISCERAL dataset containing CT scans of multiple organs. We report a significant improvement of overall dice score from 0.8849 to 0.9018 due to the incorporation of complementary-task learning.