Abstract:Lensless cameras relax the design constraints of traditional cameras by shifting image formation from analog optics to digital post-processing. While new camera designs and applications can be enabled, lensless imaging is very sensitive to unwanted interference (other sources, noise, etc.). In this work, we address a prevalent noise source that has not been studied for lensless imaging: external illumination e.g. from ambient and direct lighting. Being robust to a variety of lighting conditions would increase the practicality and adoption of lensless imaging. To this end, we propose multiple recovery approaches that account for external illumination by incorporating its estimate into the image recovery process. At the core is a physics-based reconstruction that combines learnable image recovery and denoisers, all of whose parameters are trained using experimentally gathered data. Compared to standard reconstruction methods, our approach yields significant qualitative and quantitative improvements. We open-source our implementations and a 25K dataset of measurements under multiple lighting conditions.
Abstract:Many studies have been done to detect smokes from satellite imagery. However, these prior methods are not still effective in detecting various smokes in complex backgrounds. Smokes present challenges in detection due to variations in density, color, lighting, and backgrounds such as clouds, haze, and/or mist, as well as the contextual nature of thin smoke. This paper addresses these challenges by proposing a new segmentation model called VTrUNet which consists of a virtual band construction module to capture spectral patterns and a transformer boosted UNet to capture long range contextual features. The model takes imagery of six bands: red, green, blue, near infrared, and two shortwave infrared bands as input. To show the advantages of the proposed model, the paper presents extensive results for various possible model architectures improving UNet and draws interesting conclusions including that adding more modules to a model does not always lead to a better performance. The paper also compares the proposed model with very recently proposed and related models for smoke segmentation and shows that the proposed model performs the best and makes significant improvements on prediction performances