Picture for Stéphanie Allassonnière

Stéphanie Allassonnière

CRC

T-Rep: Representation Learning for Time Series using Time-Embeddings

Add code
Oct 06, 2023
Figure 1 for T-Rep: Representation Learning for Time Series using Time-Embeddings
Figure 2 for T-Rep: Representation Learning for Time Series using Time-Embeddings
Figure 3 for T-Rep: Representation Learning for Time Series using Time-Embeddings
Figure 4 for T-Rep: Representation Learning for Time Series using Time-Embeddings
Viaarxiv icon

Improving Multimodal Joint Variational Autoencoders through Normalizing Flows and Correlation Analysis

Add code
May 19, 2023
Viaarxiv icon

Variational Inference for Longitudinal Data Using Normalizing Flows

Add code
Mar 24, 2023
Viaarxiv icon

A Geometric Perspective on Variational Autoencoders

Add code
Sep 15, 2022
Figure 1 for A Geometric Perspective on Variational Autoencoders
Figure 2 for A Geometric Perspective on Variational Autoencoders
Figure 3 for A Geometric Perspective on Variational Autoencoders
Figure 4 for A Geometric Perspective on Variational Autoencoders
Viaarxiv icon

Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case

Add code
Jun 16, 2022
Figure 1 for Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Figure 2 for Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Figure 3 for Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Figure 4 for Pythae: Unifying Generative Autoencoders in Python -- A Benchmarking Use Case
Viaarxiv icon

Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder

Add code
Apr 30, 2021
Figure 1 for Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Figure 2 for Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Figure 3 for Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Figure 4 for Data Augmentation in High Dimensional Low Sample Size Setting Using a Geometry-Based Variational Autoencoder
Viaarxiv icon

Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE

Add code
Mar 25, 2021
Figure 1 for Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE
Figure 2 for Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE
Figure 3 for Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE
Figure 4 for Data Generation in Low Sample Size Setting Using Manifold Sampling and a Geometry-Aware VAE
Viaarxiv icon

Optimisation des parcours patients pour lutter contre l'errance de diagnostic des patients atteints de maladies rares

Add code
Oct 27, 2020
Figure 1 for Optimisation des parcours patients pour lutter contre l'errance de diagnostic des patients atteints de maladies rares
Figure 2 for Optimisation des parcours patients pour lutter contre l'errance de diagnostic des patients atteints de maladies rares
Viaarxiv icon

Geometry-Aware Hamiltonian Variational Auto-Encoder

Add code
Oct 22, 2020
Figure 1 for Geometry-Aware Hamiltonian Variational Auto-Encoder
Figure 2 for Geometry-Aware Hamiltonian Variational Auto-Encoder
Figure 3 for Geometry-Aware Hamiltonian Variational Auto-Encoder
Figure 4 for Geometry-Aware Hamiltonian Variational Auto-Encoder
Viaarxiv icon

Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors

Add code
Jun 19, 2020
Figure 1 for Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors
Figure 2 for Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors
Figure 3 for Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors
Figure 4 for Mixture of Conditional Gaussian Graphical Models for unlabelled heterogeneous populations in the presence of co-factors
Viaarxiv icon