Abstract:Extraction of transaction information from bank statements is required to assess one's financial well-being for credit rating and underwriting decisions. Unlike other financial documents such as tax forms or financial statements, extracting the transaction descriptions from bank statements can provide a comprehensive and recent view into the cash flows and spending patterns. With multiple variations in layout and templates across several banks, extracting transactional level information from different table categories is an arduous task. Existing table structure recognition approaches produce sub optimal results for long, complex tables and are unable to capture all transactions accurately. This paper proposes TabSniper, a novel approach for efficient table detection, categorization and structure recognition from bank statements. The pipeline starts with detecting and categorizing tables of interest from the bank statements. The extracted table regions are then processed by the table structure recognition model followed by a post-processing module to transform the transactional data into a structured and standardised format. The detection and structure recognition architectures are based on DETR, fine-tuned with diverse bank statements along with additional feature enhancements. Results on challenging datasets demonstrate that TabSniper outperforms strong baselines and produces high-quality extraction of transaction information from bank and other financial documents across multiple layouts and templates.
Abstract:Prototypical methods have recently gained a lot of attention due to their intrinsic interpretable nature, which is obtained through the prototypes. With growing use cases of model reuse and distillation, there is a need to also study transfer of interpretability from one model to another. We present Proto2Proto, a novel method to transfer interpretability of one prototypical part network to another via knowledge distillation. Our approach aims to add interpretability to the "dark" knowledge transferred from the teacher to the shallower student model. We propose two novel losses: "Global Explanation" loss and "Patch-Prototype Correspondence" loss to facilitate such a transfer. Global Explanation loss forces the student prototypes to be close to teacher prototypes, and Patch-Prototype Correspondence loss enforces the local representations of the student to be similar to that of the teacher. Further, we propose three novel metrics to evaluate the student's proximity to the teacher as measures of interpretability transfer in our settings. We qualitatively and quantitatively demonstrate the effectiveness of our method on CUB-200-2011 and Stanford Cars datasets. Our experiments show that the proposed method indeed achieves interpretability transfer from teacher to student while simultaneously exhibiting competitive performance.