Abstract:Modern telecom systems are monitored with performance and system logs from multiple application layers and components. Detecting anomalous events from these logs is key to identify security breaches, resource over-utilization, critical/fatal errors, etc. Current supervised log anomaly detection frameworks tend to perform poorly on new types or signatures of anomalies with few or unseen samples in the training data. In this work, we propose a meta-learning-based log anomaly detection framework (LogAnMeta) for detecting anomalies from sequence of log events with few samples. LoganMeta train a hybrid few-shot classifier in an episodic manner. The experimental results demonstrate the efficacy of our proposed method
Abstract:In this paper we present a novel approach for automatic recognition of ring worm skin disease based on LBP (Local Binary Pattern) feature extracted from the affected skin images. The proposed method is evaluated by extensive experiments on the skin images collected from internet. The dataset is tested using three different classifiers i.e. Bayesian, MLP and SVM. Experimental results show that the proposed methodology efficiently discriminates between a ring worm skin and a normal skin. It is a low cost technique and does not require any special imaging devices.