Abstract:Hate speech encompasses verbal, written, or behavioral communication that targets derogatory or discriminatory language against individuals or groups based on sensitive characteristics. Automated hate speech detection plays a crucial role in curbing its propagation, especially across social media platforms. Various methods, including recent advancements in deep learning, have been devised to address this challenge. In this study, we introduce HateTinyLLM, a novel framework based on fine-tuned decoder-only tiny large language models (tinyLLMs) for efficient hate speech detection. Our experimental findings demonstrate that the fine-tuned HateTinyLLM outperforms the pretrained mixtral-7b model by a significant margin. We explored various tiny LLMs, including PY007/TinyLlama-1.1B-step-50K-105b, Microsoft/phi-2, and facebook/opt-1.3b, and fine-tuned them using LoRA and adapter methods. Our observations indicate that all LoRA-based fine-tuned models achieved over 80\% accuracy.
Abstract:Customer retention or churn prevention is a challenging task of a telecom operator. One of the effective approaches is to offer some attractive incentive or additional services or money to the subscribers for keeping them engaged and make sure they stay in the operator's network for longer time. Often, operators allocate certain amount of monetary budget to carry out the offer campaign. The difficult part of this campaign is the selection of a set of customers from a large subscriber-base and deciding the amount that should be offered to an individual so that operator's objective is achieved. There may be multiple objectives (e.g., maximizing revenue, minimizing number of churns) for selection of subscriber and selection of an offer to the selected subscriber. Apart from monetary benefit, offers may include additional data, SMS, hots-spot tethering, and many more. This problem is known as offer optimization. In this paper, we propose a novel combinatorial algorithm for solving offer optimization under heterogeneous offers by maximizing expected revenue under the scenario of subscriber churn, which is, in general, seen in telecom domain. The proposed algorithm is efficient and accurate even for a very large subscriber-base.
Abstract:Modern telecom systems are monitored with performance and system logs from multiple application layers and components. Detecting anomalous events from these logs is key to identify security breaches, resource over-utilization, critical/fatal errors, etc. Current supervised log anomaly detection frameworks tend to perform poorly on new types or signatures of anomalies with few or unseen samples in the training data. In this work, we propose a meta-learning-based log anomaly detection framework (LogAnMeta) for detecting anomalies from sequence of log events with few samples. LoganMeta train a hybrid few-shot classifier in an episodic manner. The experimental results demonstrate the efficacy of our proposed method