Abstract:Industrial image anomaly detection is a challenging problem owing to extreme class imbalance and the scarcity of labeled defective samples, particularly in few-shot settings. We propose BayPrAnoMeta, a Bayesian generalization of Proto-MAML for few-shot industrial image anomaly detection. Unlike existing Proto-MAML approaches that rely on deterministic class prototypes and distance-based adaptation, BayPrAnoMeta replaces prototypes with task-specific probabilistic normality models and performs inner-loop adaptation via a Bayesian posterior predictive likelihood. We model normal support embeddings with a Normal-Inverse-Wishart (NIW) prior, producing a Student-$t$ predictive distribution that enables uncertainty-aware, heavy-tailed anomaly scoring and is essential for robustness in extreme few-shot settings. We further extend BayPrAnoMeta to a federated meta-learning framework with supervised contrastive regularization for heterogeneous industrial clients and prove convergence to stationary points of the resulting nonconvex objective. Experiments on the MVTec AD benchmark demonstrate consistent and significant AUROC improvements over MAML, Proto-MAML, and PatchCore-based methods in few-shot anomaly detection settings.
Abstract:Credit risk models are a critical decision-support tool for financial institutions, yet tightening data-protection rules (e.g., GDPR, CCPA) increasingly prohibit cross-border sharing of borrower data, even as these models benefit from cross-institution learning. Traditional default prediction suffers from two limitations: binary classification ignores default timing, treating early defaulters (high loss) equivalently to late defaulters (low loss), and centralized training violates emerging regulatory constraints. We propose a Federated Survival Learning framework with Bayesian Differential Privacy (FSL-BDP) that models time-to-default trajectories without centralizing sensitive data. The framework provides Bayesian (data-dependent) differential privacy (DP) guarantees while enabling institutions to jointly learn risk dynamics. Experiments on three real-world credit datasets (LendingClub, SBA, Bondora) show that federation fundamentally alters the relative effectiveness of privacy mechanisms. While classical DP performs better than Bayesian DP in centralized settings, the latter benefits substantially more from federation (+7.0\% vs +1.4\%), achieving near parity of non-private performance and outperforming classical DP in the majority of participating clients. This ranking reversal yields a key decision-support insight: privacy mechanism selection should be evaluated in the target deployment architecture, rather than centralized benchmarks. These findings provide actionable guidance for practitioners designing privacy-preserving decision support systems in regulated, multi-institutional environments.
Abstract:Differentially private federated learning (DP-FL) suffers from slow convergence under tight privacy budgets due to the overwhelming noise introduced to preserve privacy. While adaptive optimizers can accelerate convergence, existing second-order methods such as DP-FedNew require O(d^2) memory at each client to maintain local feature covariance matrices, making them impractical for high-dimensional models. We propose DP-FedSOFIM, a server-side second-order optimization framework that leverages the Fisher Information Matrix (FIM) as a natural gradient preconditioner while requiring only O(d) memory per client. By employing the Sherman-Morrison formula for efficient matrix inversion, DP-FedSOFIM achieves O(d) computational complexity per round while maintaining the convergence benefits of second-order methods. Our analysis proves that the server-side preconditioning preserves (epsilon, delta)-differential privacy through the post-processing theorem. Empirical evaluation on CIFAR-10 demonstrates that DP-FedSOFIM achieves superior test accuracy compared to first-order baselines across multiple privacy regimes.




Abstract:Hate speech encompasses verbal, written, or behavioral communication that targets derogatory or discriminatory language against individuals or groups based on sensitive characteristics. Automated hate speech detection plays a crucial role in curbing its propagation, especially across social media platforms. Various methods, including recent advancements in deep learning, have been devised to address this challenge. In this study, we introduce HateTinyLLM, a novel framework based on fine-tuned decoder-only tiny large language models (tinyLLMs) for efficient hate speech detection. Our experimental findings demonstrate that the fine-tuned HateTinyLLM outperforms the pretrained mixtral-7b model by a significant margin. We explored various tiny LLMs, including PY007/TinyLlama-1.1B-step-50K-105b, Microsoft/phi-2, and facebook/opt-1.3b, and fine-tuned them using LoRA and adapter methods. Our observations indicate that all LoRA-based fine-tuned models achieved over 80\% accuracy.
Abstract:Customer retention or churn prevention is a challenging task of a telecom operator. One of the effective approaches is to offer some attractive incentive or additional services or money to the subscribers for keeping them engaged and make sure they stay in the operator's network for longer time. Often, operators allocate certain amount of monetary budget to carry out the offer campaign. The difficult part of this campaign is the selection of a set of customers from a large subscriber-base and deciding the amount that should be offered to an individual so that operator's objective is achieved. There may be multiple objectives (e.g., maximizing revenue, minimizing number of churns) for selection of subscriber and selection of an offer to the selected subscriber. Apart from monetary benefit, offers may include additional data, SMS, hots-spot tethering, and many more. This problem is known as offer optimization. In this paper, we propose a novel combinatorial algorithm for solving offer optimization under heterogeneous offers by maximizing expected revenue under the scenario of subscriber churn, which is, in general, seen in telecom domain. The proposed algorithm is efficient and accurate even for a very large subscriber-base.




Abstract:Modern telecom systems are monitored with performance and system logs from multiple application layers and components. Detecting anomalous events from these logs is key to identify security breaches, resource over-utilization, critical/fatal errors, etc. Current supervised log anomaly detection frameworks tend to perform poorly on new types or signatures of anomalies with few or unseen samples in the training data. In this work, we propose a meta-learning-based log anomaly detection framework (LogAnMeta) for detecting anomalies from sequence of log events with few samples. LoganMeta train a hybrid few-shot classifier in an episodic manner. The experimental results demonstrate the efficacy of our proposed method