Abstract:Movable antenna (MA) is an emerging technology that can significantly improve communication performance via the continuous adjustment of the antenna positions. To unleash the potential of MAs in wideband communication systems, acquiring accurate channel state information (CSI), i.e., the channel frequency responses (CFRs) between any position pair within the transmit (Tx) region and the receive (Rx) region across all subcarriers, is a crucial issue. In this paper, we study the channel estimation problem for wideband MA systems. To start with, we express the CFRs as a combination of the field-response vectors (FRVs), delay-response vector (DRV), and path-response tensor (PRT), which exhibit sparse characteristics and can be recovered by using a limited number of channel measurements at selected position pairs of Tx and Rx MAs over a few subcarriers. Specifically, we first formulate the recovery of the FRVs and DRV as a problem with multiple measurement vectors in compressed sensing (MMV-CS), which can be solved via a simultaneous orthogonal matching pursuit (SOMP) algorithm. Next, we estimate the PRT using the least-square (LS) method. Moreover, we also devise an alternating refinement approach to further improve the accuracy of the estimated FRVs, DRV, and PRT. This is achieved by minimizing the discrepancy between the received pilots and those constructed by the estimated CSI, which can be efficiently carried out by using the gradient descent algorithm. Finally, simulation results demonstrate that both the SOMP-based channel estimation method and alternating refinement method can reconstruct the complete wideband CSI with high accuracy, where the alternating refinement method performs better despite a higher complexity.
Abstract:Movable antenna (MA) is a new technology with great potential to improve communication performance by enabling local movement of antennas for pursuing better channel conditions. In particular, the acquisition of complete channel state information (CSI) between the transmitter (Tx) and receiver (Rx) regions is an essential problem for MA systems to reap performance gains. In this paper, we propose a general channel estimation framework for MA systems by exploiting the multi-path field response channel structure. Specifically, the angles of departure (AoDs), angles of arrival (AoAs), and complex coefficients of the multi-path components (MPCs) are jointly estimated by employing the compressed sensing method, based on multiple channel measurements at designated positions of the Tx-MA and Rx-MA. Under this framework, the Tx-MA and Rx-MA measurement positions fundamentally determine the measurement matrix for compressed sensing, of which the mutual coherence is analyzed from the perspective of Fourier transform. Moreover, two criteria for MA measurement positions are provided to guarantee the successful recovery of MPCs. Then, we propose several MA measurement position setups and compare their performance. Finally, comprehensive simulation results show that the proposed framework is able to estimate the complete CSI between the Tx and Rx regions with a high accuracy.