Abstract:The rapid advancements in satellite remote sensing have enhanced the capability to monitor and analyze the Earth's surface. Among the many variables captured through satellite sensors, Land Surface Temperature (LST) plays a critical role in understanding key environmental processes. However, obtaining high-resolution LST data remains a challenge, as satellite sensors often face a trade-off between spatial and temporal resolutions. In response, Spatio-Temporal Fusion (STF) has emerged as a powerful method to integrate two satellite data sources, one providing high spatial but low temporal resolution, and the other offering high temporal but low spatial resolution. Although a range of STF techniques have been proposed, from traditional methods to cutting-edge deep learning (DL) models, most have focused on surface reflectance, with limited application to LST estimation. DL approaches, in particular, show promise in improving the spatial and temporal resolutions of LST by capturing complex, non-linear relationships between input and output LST data. This paper offers a comprehensive review of the latest advancements in DL-based STF techniques for LST estimation. We analyze key research developments, mathematically formulate the STF problem, and introduce a novel taxonomy for DL-based STF methods. Furthermore, we discuss the challenges faced by current methods and highlight future research directions. In addition, we present the first open-source benchmark STF dataset for LST estimation, consisting of 51 pairs of MODIS-Landsat images spanning from 2013 to 2024. To support our findings, we conduct extensive experiments on state-of-the-art methods and present both quantitative and qualitative assessments. This is the first survey paper focused on DL-based STF for LST estimation. We hope it serves as a valuable reference for researchers and paves the way for future research in this field.
Abstract:Federated Learning (FL) has emerged as a promising Machine Learning paradigm, enabling multiple users to collaboratively train a shared model while preserving their local data. To minimize computing and communication costs associated with parameter transfer, it is common practice in FL to select a subset of clients in each training round. This selection must consider both system and static heterogeneity. Therefore, we propose FLASH-RL, a framework that utilizes Double Deep QLearning (DDQL) to address both system and static heterogeneity in FL. FLASH-RL introduces a new reputation-based utility function to evaluate client contributions based on their current and past performances. Additionally, an adapted DDQL algorithm is proposed to expedite the learning process. Experimental results on MNIST and CIFAR-10 datasets have shown FLASH-RL's effectiveness in achieving a balanced trade-off between model performance and end-to-end latency against existing solutions. Indeed, FLASH-RL reduces latency by up to 24.83% compared to FedAVG and 24.67% compared to FAVOR. It also reduces the training rounds by up to 60.44% compared to FedAVG and +76% compared to FAVOR. In fall detection using the MobiAct dataset, FLASH-RL outperforms FedAVG by up to 2.82% in model's performance and reduces latency by up to 34.75%. Additionally, FLASH-RL achieves the target performance faster, with up to a 45.32% reduction in training rounds compared to FedAVG.