Abstract:Crop diseases significantly affect the quantity and quality of agricultural production. In a context where the goal of precision agriculture is to minimize or even avoid the use of pesticides, weather and remote sensing data with deep learning can play a pivotal role in detecting crop diseases, allowing localized treatment of crops. However, combining heterogeneous data such as weather and images remains a hot topic and challenging task. Recent developments in transformer architectures have shown the possibility of fusion of data from different domains, for instance text-image. The current trend is to custom only one transformer to create a multimodal fusion model. Conversely, we propose a new approach to realize data fusion using three transformers. In this paper, we first solved the missing satellite images problem, by interpolating them with a ConvLSTM model. Then, proposed a multimodal fusion architecture that jointly learns to process visual and weather information. The architecture is built from three main components, a Vision Transformer and two transformer-encoders, allowing to fuse both image and weather modalities. The results of the proposed method are promising achieving 97\% overall accuracy.
Abstract:Monitoring seed maturity is an increasing challenge in agriculture due to climate change and more restrictive practices. Seeds monitoring in the field is essential to optimize the farming process and to guarantee yield quality through high germination. Traditional methods are based on limited sampling in the field and analysis in laboratory. Moreover, they are time consuming and only allow monitoring sub-sections of the crop field. This leads to a lack of accuracy on the condition of the crop as a whole due to intra-field heterogeneities. Multispectral imagery by UAV allows uniform scan of fields and better capture of crop maturity information. On the other hand, deep learning methods have shown tremendous potential in estimating agronomic parameters, especially maturity. However, they require large labeled datasets. Although large sets of aerial images are available, labeling them with ground truth is a tedious, if not impossible task. In this paper, we propose a method for estimating parsley seed maturity using multispectral UAV imagery, with a new approach for automatic data labeling. This approach is based on parametric and non-parametric models to provide weak labels. We also consider the data acquisition protocol and the performance evaluation of the different steps of the method. Results show good performance, and the non-parametric kernel density estimator model can improve neural network generalization when used as a labeling method, leading to more robust and better performing deep neural models.
Abstract:Crop and weed monitoring is an important challenge for agriculture and food production nowadays. Thanks to recent advances in data acquisition and computation technologies, agriculture is evolving to a more smart and precision farming to meet with the high yield and high quality crop production. Classification and recognition in Unmanned Aerial Vehicles (UAV) images are important phases for crop monitoring. Advances in deep learning models relying on Convolutional Neural Network (CNN) have achieved high performances in image classification in the agricultural domain. Despite the success of this architecture, CNN still faces many challenges such as high computation cost, the need of large labelled datasets, ... Natural language processing's transformer architecture can be an alternative approach to deal with CNN's limitations. Making use of the self-attention paradigm, Vision Transformer (ViT) models can achieve competitive or better results without applying any convolution operations. In this paper, we adopt the self-attention mechanism via the ViT models for plant classification of weeds and crops: red beet, off-type beet (green leaves), parsley and spinach. Our experiments show that with small set of labelled training data, ViT models perform better compared to state-of-the-art CNN-based models EfficientNet and ResNet, with a top accuracy of 99.8\% achieved by the ViT model.
Abstract:This paper addresses the problem of liver cancer segmentation in Whole Slide Image (WSI). We propose a multi-scale image processing method based on automatic end-to-end deep neural network algorithm for segmentation of cancer area. A seven-levels gaussian pyramid representation of the histopathological image was built to provide the texture information in different scales. In this work, several neural architectures were compared using the original image level for the training procedure. The proposed method is based on U-Net applied to seven levels of various resolutions (pyramidal subsumpling). The predictions in different levels are combined through a voting mechanism. The final segmentation result is generated at the original image level. Partial color normalization and weighted overlapping method were applied in preprocessing and prediction separately. The results show the effectiveness of the proposed multi-scales approach achieving better scores compared to the state-of-the-art.
Abstract:In modern agriculture, usually weeds control consists in spraying herbicides all over the agricultural field. This practice involves significant waste and cost of herbicide for farmers and environmental pollution. One way to reduce the cost and environmental impact is to allocate the right doses of herbicide at the right place and at the right time (Precision Agriculture). Nowadays, Unmanned Aerial Vehicle (UAV) is becoming an interesting acquisition system for weeds localization and management due to its ability to obtain the images of the entire agricultural field with a very high spatial resolution and at low cost. Despite the important advances in UAV acquisition systems, automatic weeds detection remains a challenging problem because of its strong similarity with the crops. Recently Deep Learning approach has shown impressive results in different complex classification problem. However, this approach needs a certain amount of training data but, creating large agricultural datasets with pixel-level annotations by expert is an extremely time consuming task. In this paper, we propose a novel fully automatic learning method using Convolutional Neuronal Networks (CNNs) with unsupervised training dataset collection for weeds detection from UAV images. The proposed method consists in three main phases. First we automatically detect the crop lines and using them to identify the interline weeds. In the second phase, interline weeds are used to constitute the training dataset. Finally, we performed CNNs on this dataset to build a model able to detect the crop and weeds in the images. The results obtained are comparable to the traditional supervised training data labeling. The accuracy gaps are 1.5% in the spinach field and 6% in the bean field.
Abstract:Texture is an important cue for different computer vision tasks and applications. Local Binary Pattern (LBP) is considered one of the best yet efficient texture descriptors. However, LBP has some notable limitations, mostly the sensitivity to noise. In this paper, we address these criteria by introducing a novel texture descriptor, Robust Adaptive Median Binary Pattern (RAMBP). RAMBP based on classification process of noisy pixels, adaptive analysis window, scale analysis and image regions median comparison. The proposed method handles images with high noisy textures, and increases the discriminative properties by capturing microstructure and macrostructure texture information. The proposed method has been evaluated on popular texture datasets for classification and retrieval tasks, and under different high noise conditions. Without any train or prior knowledge of noise type, RAMBP achieved the best classification compared to state-of-the-art techniques. It scored more than $90\%$ under $50\%$ impulse noise densities, more than $95\%$ under Gaussian noised textures with standard deviation $\sigma = 5$, and more than $99\%$ under Gaussian blurred textures with standard deviation $\sigma = 1.25$. The proposed method yielded competitive results and high performance as one of the best descriptors in noise-free texture classification. Furthermore, RAMBP showed also high performance for the problem of noisy texture retrieval providing high scores of recall and precision measures for textures with high levels of noise.
Abstract:Ultrasound-Guided Regional Anesthesia (UGRA) has been gaining importance in the last few years, offering numerous advantages over alternative methods of nerve localization (neurostimulation or paraesthesia). However, nerve detection is one of the most tasks that anaesthetists can encounter in the UGRA procedure. Computer aided system that can detect automatically region of nerve, would help practitioner to concentrate more in anaesthetic delivery. In this paper we propose a new method based on deep learning combined with spatiotemporal information to robustly segment the nerve region. The proposed method is based on two phases, localisation and segmentation. The first phase, consists in using convolutional neural network combined with spatial and temporal consistency to detect the nerve zone. The second phase utilises active contour model to delineate the region of interest. Obtained results show the validity of the proposed approach and its robustness.