The Hong Kong University of Science and Technology
Abstract:Traffic signal control is crucial for optimizing the efficiency of road network by regulating traffic light phases. Existing research predominantly focuses on heuristic or reinforcement learning (RL)-based methods, which often lack transferability across diverse traffic scenarios and suffer from poor interpretability. This paper introduces a novel approach, LLMLight, utilizing large language models (LLMs) for traffic signal control tasks. By leveraging LLMs' impressive generalization and zero-shot reasoning capabilities, LLMLight executes a human-like decision-making process for efficient traffic management. Specifically, the framework begins by composing task descriptions, current traffic conditions, and prior knowledge into a prompt. Subsequently, we utilize LLM's chain-of-thought (CoT) reasoning ability to identify the next traffic signal phase, ensuring optimal efficiency in the road network. LLMLight achieves state-of-the-art (SOTA) or competitive results across five real-world traffic datasets. Notably, LLMLight showcases remarkable generalization, interpretability, and zero-shot reasoning abilities, even without any training for transportation management tasks. Our project is available at https://github.com/usail-hkust/LLMTSCS.
Abstract:Vehicle Energy Consumption (VEC) estimation aims to predict the total energy required for a given trip before it starts, which is of great importance to trip planning and transportation sustainability. Existing approaches mainly focus on extracting statistically significant factors from typical trips to improve the VEC estimation. However, the energy consumption of each vehicle may diverge widely due to the personalized driving behavior under varying travel contexts. To this end, this paper proposes a preference-aware meta-optimization framework Meta-Pec for personalized vehicle energy consumption estimation. Specifically, we first propose a spatiotemporal behavior learning module to capture the latent driver preference hidden in historical trips. Moreover, based on the memorization of driver preference, we devise a selection-based driving behavior prediction module to infer driver-specific driving patterns on a given route, which provides additional basis and supervision signals for VEC estimation. Besides, a driver-specific meta-optimization scheme is proposed to enable fast model adaption by learning and sharing transferable knowledge globally. Extensive experiments on two real-world datasets show the superiority of our proposed framework against ten numerical and data-driven machine learning baselines. The source code is available at https://github.com/usail-hkust/Meta-Pec.
Abstract:Federated Graph Neural Network (FedGNN) has recently emerged as a rapidly growing research topic, as it integrates the strengths of graph neural networks and federated learning to enable advanced machine learning applications without direct access to sensitive data. Despite its advantages, the distributed nature of FedGNN introduces additional vulnerabilities, particularly backdoor attacks stemming from malicious participants. Although graph backdoor attacks have been explored, the compounded complexity introduced by the combination of GNNs and federated learning has hindered a comprehensive understanding of these attacks, as existing research lacks extensive benchmark coverage and in-depth analysis of critical factors. To address these limitations, we propose Bkd-FedGNN, a benchmark for backdoor attacks on FedGNN. Specifically, Bkd-FedGNN decomposes the graph backdoor attack into trigger generation and injection steps, and extending the attack to the node-level federated setting, resulting in a unified framework that covers both node-level and graph-level classification tasks. Moreover, we thoroughly investigate the impact of multiple critical factors in backdoor attacks on FedGNN. These factors are categorized into global-level and local-level factors, including data distribution, the number of malicious attackers, attack time, overlapping rate, trigger size, trigger type, trigger position, and poisoning rate. Finally, we conduct comprehensive evaluations on 13 benchmark datasets and 13 critical factors, comprising 1,725 experimental configurations for node-level and graph-level tasks from six domains. These experiments encompass over 8,000 individual tests, allowing us to provide a thorough evaluation and insightful observations that advance our understanding of backdoor attacks on FedGNN.The Bkd-FedGNN benchmark is publicly available at https://github.com/usail-hkust/BkdFedGCN.