Abstract:We introduce a generative model for protein backbone design utilizing geometric products and higher order message passing. In particular, we propose Clifford Frame Attention (CFA), an extension of the invariant point attention (IPA) architecture from AlphaFold2, in which the backbone residue frames and geometric features are represented in the projective geometric algebra. This enables to construct geometrically expressive messages between residues, including higher order terms, using the bilinear operations of the algebra. We evaluate our architecture by incorporating it into the framework of FrameFlow, a state-of-the-art flow matching model for protein backbone generation. The proposed model achieves high designability, diversity and novelty, while also sampling protein backbones that follow the statistical distribution of secondary structure elements found in naturally occurring proteins, a property so far only insufficiently achieved by many state-of-the-art generative models.
Abstract:In practice, domain shifts are likely to occur between training and test data, necessitating domain adaptation (DA) to adjust the pre-trained source model to the target domain. Recently, universal domain adaptation (UniDA) has gained attention for addressing the possibility of an additional category (label) shift between the source and target domain. This means new classes can appear in the target data, some source classes may no longer be present, or both at the same time. For practical applicability, UniDA methods must handle both source-free and online scenarios, enabling adaptation without access to the source data and performing batch-wise updates in parallel with prediction. In an online setting, preserving knowledge across batches is crucial. However, existing methods often require substantial memory, e.g. by using memory queues, which is impractical because memory is limited and valuable, in particular on embedded systems. Therefore, we consider memory-efficiency as an additional constraint in this paper. To achieve memory-efficient online source-free universal domain adaptation (SF-UniDA), we propose a novel method that continuously captures the distribution of known classes in the feature space using a Gaussian mixture model (GMM). This approach, combined with entropy-based out-of-distribution detection, allows for the generation of reliable pseudo-labels. Finally, we combine a contrastive loss with a KL divergence loss to perform the adaptation. Our approach not only achieves state-of-the-art results in all experiments on the DomainNet dataset but also significantly outperforms the existing methods on the challenging VisDA-C dataset, setting a new benchmark for online SF-UniDA. Our code is available at https://github.com/pascalschlachter/GMM.
Abstract:In recent years, diffusion models (DMs) have become a popular method for generating synthetic data. By achieving samples of higher quality, they quickly became superior to generative adversarial networks (GANs) and the current state-of-the-art method in generative modeling. However, their potential has not yet been exploited in radar, where the lack of available training data is a long-standing problem. In this work, a specific type of DMs, namely denoising diffusion probabilistic model (DDPM) is adapted to the SAR domain. We investigate the network choice and specific diffusion parameters for conditional and unconditional SAR image generation. In our experiments, we show that DDPM qualitatively and quantitatively outperforms state-of-the-art GAN-based methods for SAR image generation. Finally, we show that DDPM profits from pretraining on largescale clutter data, generating SAR images of even higher quality.