Abstract:Aspect-based sentiment analysis (ABSA), a fine-grained sentiment classification task, has received much attention recently. Many works investigate sentiment information through opinion words, such as ''good'' and ''bad''. However, implicit sentiment widely exists in the ABSA dataset, which refers to the sentence containing no distinct opinion words but still expresses sentiment to the aspect term. To deal with implicit sentiment, this paper proposes an ABSA method that integrates explicit sentiment augmentations. And we propose an ABSA-specific augmentation method to create such augmentations. Specifically, we post-trains T5 by rule-based data. We employ Syntax Distance Weighting and Unlikelihood Contrastive Regularization in the training procedure to guide the model to generate an explicit sentiment. Meanwhile, we utilize the Constrained Beam Search to ensure the augmentation sentence contains the aspect terms. We test ABSA-ESA on two of the most popular benchmarks of ABSA. The results show that ABSA-ESA outperforms the SOTA baselines on implicit and explicit sentiment accuracy.