Abstract:This paper describes our submissions for the Social Media Mining for Health (SMM4H)2021 shared tasks. We participated in 2 tasks:(1) Classification, extraction and normalization of adverse drug effect (ADE) mentions in English tweets (Task-1) and (2) Classification of COVID-19 tweets containing symptoms(Task-6). Our approach for the first task uses the language representation model RoBERTa with a binary classification head. For the second task, we use BERTweet, based on RoBERTa. Fine-tuning is performed on the pre-trained models for both tasks. The models are placed on top of a custom domain-specific processing pipeline. Our system ranked first among all the submissions for subtask-1(a) with an F1-score of 61%. For subtask-1(b), our system obtained an F1-score of 50% with improvements up to +8% F1 over the score averaged across all submissions. The BERTweet model achieved an F1 score of 94% on SMM4H 2021 Task-6.
Abstract:Uncontrolled growth of weeds can severely affect the crop yield and quality. Unrestricted use of herbicide for weed removal alters biodiversity and cause environmental pollution. Instead, identifying weed-infested regions can aid selective chemical treatment of these regions. Advances in analyzing farm images have resulted in solutions to identify weed plants. However, a majority of these approaches are based on supervised learning methods which requires huge amount of manually annotated images. As a result, these supervised approaches are economically infeasible for the individual farmer because of the wide variety of plant species being cultivated. In this paper, we propose a deep learning-based semi-supervised approach for robust estimation of weed density and distribution across farmlands using only limited color images acquired from autonomous robots. This weed density and distribution can be useful in a site-specific weed management system for selective treatment of infected areas using autonomous robots. In this work, the foreground vegetation pixels containing crops and weeds are first identified using a Convolutional Neural Network (CNN) based unsupervised segmentation. Subsequently, the weed infected regions are identified using a fine-tuned CNN, eliminating the need for designing hand-crafted features. The approach is validated on two datasets of different crop/weed species (1) Crop Weed Field Image Dataset (CWFID), which consists of carrot plant images and the (2) Sugar Beets dataset. The proposed method is able to localize weed-infested regions a maximum recall of 0.99 and estimate weed density with a maximum accuracy of 82.13%. Hence, the proposed approach is shown to generalize to different plant species without the need for extensive labeled data.