Abstract:Recently, modeling temporal patterns of user-item interactions have attracted much attention in recommender systems. We argue that existing methods ignore the variety of temporal patterns of user behaviors. We define the subset of user behaviors that are irrelevant to the target item as noises, which limits the performance of target-related time cycle modeling and affect the recommendation performance. In this paper, we propose Denoising Time Cycle Modeling (DiCycle), a novel approach to denoise user behaviors and select the subset of user behaviors that are highly related to the target item. DiCycle is able to explicitly model diverse time cycle patterns for recommendation. Extensive experiments are conducted on both public benchmarks and a real-world dataset, demonstrating the superior performance of DiCycle over the state-of-the-art recommendation methods.
Abstract:Aiming at helping users locally discovery retail services (e.g., entertainment and dinning), Online to Offline (O2O) service platforms have become popular in recent years, which greatly challenge current recommender systems. With the real data in Alipay, a feeds-like scenario for O2O services, we find that recurrence based temporal patterns and position biases commonly exist in our scenarios, which seriously threaten the recommendation effectiveness. To this end, we propose COUPA, an industrial system targeting for characterizing user preference with following two considerations: (1) Time aware preference: we employ the continuous time aware point process equipped with an attention mechanism to fully capture temporal patterns for recommendation. (2) Position aware preference: a position selector component equipped with a position personalization module is elaborately designed to mitigate position bias in a personalized manner. Finally, we carefully implement and deploy COUPA on Alipay with a cooperation of edge, streaming and batch computing, as well as a two-stage online serving mode, to support several popular recommendation scenarios. We conduct extensive experiments to demonstrate that COUPA consistently achieves superior performance and has potential to provide intuitive evidences for recommendation